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Summary

Fluid-particle contact is essential in many processes in the chemical, petro-
chemical, metallurgical and food processing industry. A reactor type which
is particularly successful in establishing a thorough contact between fluid
and particles, and has excellent heat and mass transfer properties, is the
fluidised bed reactor. In these reactors the interaction between fluid and
particles (drag force) balances the gravity acting on the particles, with the
effect that the particles ‘float’ in the reactor, which enhances mixing prop-
erties.

The hydrodynamics of fluidised bed reactors are very complex, which has
caused severe problems in the design and scale-up of these reactors in the
past. Computational Fluid Dynamics (CFD) models may form an impor-
tant tool in this process, as they provide the possibility to study the influ-
ence of several parameters in a cost efficient way. In the multilevel mod-
elling approach a continuum model is used to simulate engineering scale
fluidised beds. The closures which describe the effective particle-particle
interaction can be obtained from discrete particle simulations, whereas the
closures describing the effective fluid-particle interaction can be obtained
from lattice-Boltzmann simulations. This thesis focuses on the last item:
the derivation of accurate drag closures from lattice-Boltzmann simulations.
The fluid-particle interaction (drag force) is an essential element of mod-
elling fluidised bed reactors, that is, accurate closures are required to obtain
realistic results from the higher order models. Currently combinations of
the Ergun and Wen and Yu models are often used. However, these equa-
tions are 40 to 50 years old and their validity has recently been questioned.
Furthermore, they do not take into account the effects of polydispersity and
inhomogeneities that occur in practical applications.

The lattice-Boltzmann simulations of monodisperse systems showed that for
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low Reynolds numbers the Kozeny-Carman equation is a good description of
the drag force at high packing fractions. For more dilute systems a correction
is necessary to ensure that the drag force does not vanish in the limit ε → 1,
which would follow from the Kozeny-Carman equation. For intermediate
and high Reynolds numbers the results for the drag force showed a behaviour
that is not a linear function of the Reynolds number, contrary to what is
often assumed. The simulation data were compared to several literature
models, none of which proved accurate over the entire range of porosities
and Reynolds numbers. Therefore, a new relation is presented that fits the
simulation data over the entire range of Reynolds numbers (0 < Re < 1000)
and porosities (0.4 < ε < 0.9) with an average deviation of only 3 %. In the
limit of ε → 1, this relation yields a drag coefficient which is close to the
expression by Turton and Levenspiel (1986), which provides the best fit to
the experimental data for the drag on a single sphere.

Simulations of binary mixtures were performed with various diameter ratios
(0.25 < d1/d2 < 0.7), porosities (0.35 < ε < 0.9), mixture compositions
and Reynolds numbers (0 < 〈Re〉 < 500). The relation that was derived
from the monodisperse simulations proved capable of predicting the overall
pressure drop over a binary system with an average deviation of less than
5 %. The drag force acting on an individual particle in a binary system
was shown to be very different from the drag force on the same particle in a
monodisperse system with identical porosity and Reynolds number. In order
to correct for the effect of polydispersity, a new relation was derived from
theoretical considerations using the Kozeny-Carman approximation. This
relation was shown to be in very good agreement with the simulation data
for all porosities and Reynolds numbers, provided that the diameter ratios
are not very extreme. With an extra term the average deviation from the
simulation results for the individual particle drag force was reduced to 4.5 %
over the entire range. Simulations of a polydisperse system, consisting of
four particle species, indicated that the validity of the correction factor is
not limited to bidisperse systems. It is stressed that the difference between
predictions from a model with this correction term and predictions from
the classical drag models may be up to a factor of 5. The model that was
originally proposed by Patwardhan and Tien (1985) gave similarly accurate
results for the drag force on individual particles, but only after modification
to incorporate the correct average diameter. For the use in larger scale
numerical codes, the explicit expression suggested in this work will be far
more practical.
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Summary

Pressure drop measurements in mono- and bidisperse packed beds were per-
formed in order to experimentally validate the numerical results. For low
Reynolds numbers the agreement with the new relation was excellent, with
an average deviation of around 5 %. In the intermediate Reynolds number
regime the deviations were much larger (around 24 %) and systematic. It is
anticipated that some systematic error was introduced in the calculation of
the porosity or the viscosity. The deviation decreases for higher Reynolds
numbers.

The new drag relations were implemented in the discrete particle model,
with which two types of simulations were done: (i) the formation of a single
bubble by a jet, and (ii) the segregation of a mixture of particles of different
sizes. The results were compared to experiments with similar systems, where
the focus was in particular on the effect of the boundary conditions and the
drag models. From the single bubble simulations it could be concluded that
a fine grid is necessary to obtain realistic structures in the bed. No definite
conclusion could be drawn about the best drag model, although it should be
noted that the Ergun/Wen and Yu model overestimated the bubble size. The
difference between the model of Hill et al. (2001b) and the new model was
negligible. The segregation simulations showed that the correction factor for
polydispersity improves the predictions for the segregation rate considerably.
The combination of the new drag relation and the correction factor gave
the best results for the segregation rate. However, a one-to-one comparison
proved difficult, since the segregation rate was found to be somewhat effected
by the type of boundary conditions employed in the simulations.

A calculation of the inversion velocity in mixtures that differ in size and
density showed that the new drag model is capable of predicting reasonably
accurate values for this velocity. The correct trend was predicted when the
composition is changed, in contrast to many literature relations.

Finally, the drag force in clusters was studied using lattice-Boltzmann sim-
ulations. The drag coefficient of irregularly shaped particles (clusters with
zero inter-particle distance) agreed very well with literature values. When
the inter-particle distance was increased, the drag force on the cluster in-
creased as well due to the development of flow in between the particles. The
drag force that individual particles in the clusters experience was shown to
depend heavily on the shielding by other particles.

vii
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Samenvatting

Contact tussen een gas of vloeistof en vaste deeltjes is essentieel in talrijke
processen in de chemische, petrochemische, metallurgische en voedselver-
werkende industrie. Een type reactoren dat een goed contact tussen de
vaste stof en het flüıdum combineert met uitstekende eigenschappen wat be-
treft warmte- en stofoverdracht is het geflüıdiseerde bed. De wrijvingskracht
tussen gas (of vloeistof) en deeltjes is in deze reactoren zo groot, dat hij de
zwaartekracht opheft zodat de deeltjes als het ware door de reactor gaan
zweven, wat de menging in de reactor sterk bevordert.

De stroming in zo’n geflüıdiseerd bed is erg ingewikkeld, en daardoor zijn
in het verleden al problemen ontstaan met het ontwerpen en opschalen van
deze reactoren. Computermodellen kunnen hierbij uitkomst bieden, omdat
deze het mogelijk maken de invloed van verschillende parameters op een
grondige en goedkope manier te bestuderen. Het modelleren van deze reac-
toren op verschillende niveaus lijkt hierbij uitermate veelbelovend. Hierbij
wordt de hele reactor gemodelleerd met behulp van een continuum model.
Informatie over de interactie tussen deeltjes onderling wordt verkregen met
behulp van het discrete deeltjes model, en informatie over de wrijving tussen
gas en deeltjes uit simulaties met het rooster-Boltzmann model. In dit proef-
schrift ligt de nadruk op het meest fundamentele niveau: de afleiding van een
vergelijking voor de interactie tussen deeltjes en flüıdum, die in de modellen
op grotere schaal gebruikt kan worden om de wrijvingskracht te beschrijven.
Deze wrijving is een essentieel onderdeel van het model van een geflüıdiseerd
bed, en een nauwkeurige vergelijking hiervoor kan de overeenstemming van
de simulatieresultaten met de praktijk sterk verbeteren. Tot nu toe worden
in de meeste modellen combinaties van de Ergun en Wen en Yu vergelijkin-
gen gebruikt, die beide al 40 tot 50 jaar oud zijn en waarvan de geschiktheid
steeds meer in twijfel wordt getrokken. Bovendien houden deze modellen
geen rekening met de aanwezigheid van inhomogeniteiten en polydispersiteit
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(mengsels), die in de praktijk vrijwel onvermijdelijk blijkt te zijn.

Uit de rooster-Boltzmann simulaties van monodisperse systemen bleek dat
bij lage Reynoldsgetallen de Kozeny-Carman vergelijking een goede beschrij-
ving geeft van de wrijvingskracht in systemen met een hoge pakkingsfractie.
In verdunde systemen is een correctie nodig die ervoor zorgt dat het gedrag
voor ε → 1 ook juist wordt weergegeven. In het geval van middelmatige en
hoge Reynoldsgetallen bleek dat de wrijvingskracht geen lineaire functie van
het Reynoldsgetal is, in tegenstelling tot wat vaak wordt aangenomen. Een
nieuwe vergelijking beschrijft de simulatiedata voor alle Reynoldsgetallen
(0 < Re < 1000) en porositeiten (0.4 < ε < 0.9) met een gemiddelde
afwijking van slechts 3 %.

Simulaties van bidisperse systemen zijn gedaan met variabele diameter ra-
tio’s (0.25 < d1/d2 < 0.7), porositeiten (0.35 < ε < 0.9), samenstelling van
het mengsel en Reynoldsgetallen (0 < 〈Re〉 < 500). De vergelijking die was
gevonden voor de wrijvingskracht in een monodispers systeem blijkt ook de
drukval over een bidispers systeem goed te beschrijven, met een gemiddelde
afwijking van de simulatieresultaten van minder dan 5 %. Individuele deel-
tjes in een binair systeem ondergaan een wrijvingskracht die sterk afwijkt
van de kracht op hetzelfde deeltje in een monodispers systeem met gelijke
porositeit en Reynoldsgetal. Een correctiefactor die was afgeleid op ba-
sis van theoretische overwegingen geeft goede resultaten bij het beschrijven
van de individuele wrijvingskracht op de deeltjes voor alle porositeiten en
Reynoldsgetallen, mits de diameters van de deeltjes niet te veel verschillen.
Met een extra term kan voor dit laatste gecorrigeerd worden, en is de gemid-
delde afwijking nog slechts 4.5 % voor alle simulaties. Simulaties van een
polydispers systeem met vier verschillende deeltjes geven aan dat de correc-
tiefactor ook in dit geval geldig is. Het verschil tussen voorspellingen voor
de kracht op een enkel deeltje met en zonder deze correctie kan oplopen tot
een factor 5. Het model dat oorspronkelijk is voorgesteld door Patwardhan
en Tien (1985) geeft - met een aanpassing voor de juiste gemiddelde diame-
ter - vergelijkbare resultaten voor de wrijvingskracht op individuele deeltjes.
Dit model is echter ingewikkelder in gebruik vergeleken met de correctiefac-
tor die in dit proefschrift wordt voorgesteld, waardoor deze laatste toch de
voorkeur verdient.

De nieuwe vergelijking voor de wrijvingskracht is experimenteel gevalideerd
met behulp van drukvalmetingen in mono- en bidisperse gepakte bedden.
Voor lage Reynoldsgetallen was de overeenstemming uitstekend, met een
gemiddelde afwijking van rond de 5 %. Bij middelgrote Reynoldsgetallen
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Samenvatting

werd echter een systematische afwijking van rond de 24 % gevonden, die
waarschijnlijk veroorzaakt is door een fout in de bepaling van de porositeit
of de viscositeit. Bij hogere Reynoldsgetallen werd de afwijking minder.

De nieuwe vergelijkingen voor de wrijvingskracht zijn gëımplementeerd in
het discrete deeltjes model, waarmee vervolgens simulaties van twee ver-
schillende systemen gedaan zijn, namelijk de vorming van een enkele bel
door een jet en de segregatie van een mengsel met verschillende deeltjes-
groottes. De simulatieresultaten zijn vergeleken met experimentele data,
waarbij de gebruikte randvoorwaarden en wrijvingsmodellen in de simulatie
zijn gevarieerd. Uit de belvormingssimulaties bleek dat het nodig is om
een fijn grid te gebruiken om de structuren in het bed terug te vinden in
een simulatie. Een conclusie over het beste model voor de wrijvingskracht
kan op basis van deze simulaties niet worden getrokken, al is duidelijk dat
met de combinatie van Ergun en Wen en Yu de belgrootte overschat wordt.
Het verschil tussen het nieuwe model en dat van Hill e.a. (2001b) is echter
zeer klein bij deze simulaties. De segregatie simulaties maken duidelijk dat
de segregatiesnelheid aanzienlijk beter voorspeld wordt indien de correc-
tiefactor voor polydispersiteit gebruikt wordt. De combinatie van de nieuwe
vergelijking met de correctiefactor geeft de beste resultaten.

Berekeningen van de snelheid waarbij inversie optreedt - in systemen met
deeltjes met verschillende groottes en dichtheden - laten zien dat deze re-
delijk goed voorspeld wordt met de nieuwe vergelijkingen voor de wrijvings-
kracht. Bovendien wordt ook de juiste trend voorspeld indien de samen-
stelling van het mengsel gewijzigd wordt, iets waartoe veel literatuurmo-
dellen niet in staat zijn.

Tot slot is gekeken naar de wrijvingskracht die op clusters van deeltjes werkt.
De kracht op clusters waarin de deeltjes elkaar raken komt goed overeen met
literatuurwaarden. Bij een toenemende afstand tussen de deeltjes neemt
de totale kracht op het cluster ook toe door de ontwikkeling van stroming
tussen de deeltjes. De wrijvingskracht op individuele deeltjes in het cluster
is afhankelijk van de mate van afscherming van dat deeltje door andere
deeltjes.
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Chapter 1

Introduction

Abstract

Computational Fluid Dynamics constitute an emerging tool for the design
and optimisation of fluidised beds and other types of multiphase chemical
reactors. In the multi-level modelling approach, discussed in this chap-
ter, various models provide information on processes prevailing at different
length and time scales: the lattice-Boltzmann model is used to obtain accu-
rate closure relations for the drag force, the discrete particle model does the
same for the particle-particle interaction, and with these closures continuum
models can simulate engineering scale reactors more accurately. This thesis
focuses on the most fundamental step of the process: the derivation of an
accurate relation for the drag force between fluid and particles.
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Chapter 1

1.1 Introduction

Fluid-solid contact is essential for many processes in the chemical, petro-
chemical and metallurgical industries, and encountered as well in energy
production and food processing. To illustrate this heterogeneously catal-
ysed reactions are mentioned, where the intensity of the contact between
gas or liquid and solid is directly linked to the chemical conversion rate. If
the reactants cannot reach the catalyst, the reaction does not occur. Other
systems where fluid-solid contact is crucial are those where one of the reac-
tants is a solid that reacts with a gas or liquid. The burning of solid fuels
and the formation of syngas from coal are important processes where this
type of contact occurs, as well as the production of polymers where the solid
polymer is formed as the result of a fast heterogeneously catalysed chemical
transformation.

A thorough contact between a fluid and a solid can be achieved in several
reactor types. The packed bed is the oldest and most often applied reactor
type to contact gases or liquids with solid catalysts. In these reactors the
fluid flows through a vessel filled with solid particles, usually comprising a
catalyst. Smaller particles have a larger specific surface area, thereby in-
creasing the contact area between the phases and thus the heat and mass
transfer rates. However, when smaller particles are used the pressure drop
increases strongly as well. Another disadvantage of the packed bed is pos-
sible ‘hot spot’ formation if the (exothermic) reaction becomes too fast at
a certain position in the bed, which could ultimately lead to a runaway
reaction.

To achieve high heat and mass transfer rates, fluidised beds are often applied.
In these reactors, the particles are not fixed in the bed, but move along
with the carrier phase, which in most cases is gaseous. The gas and solids
mixing rate is high compared to that encountered in packed bed reactors,
thus preventing the formation of hot spots. Furthermore, the pressure drop
over a fluidised bed is usually lower than over a packed bed, and limited
to the buoyant weight of the particulate phase. Well-known examples of
fluidised bed processes are the fluidised catalytic cracking (FCC) of oil in a
riser-reactor and the polymerisation of olefins in a fluidised bed.

Important factors that determine the intensity of the fluid-solid contact, and
therefore the efficiency of the reactor, are the amount of particles residing
in the reactor, their size, fluid properties like density and viscosity, and the

2



Introduction

(relative) velocities of fluid and particles. These factors determine the force
that the phases exert on each other, the so-called drag force, and with that
the flow behaviour in the reactor.

1.2 Drag force

When a solid particle moves in a fluid, or when a gas or liquid finds its way
through a bed of solid particles, the fluid and solids exert a force on each
other. This force is called the drag force, and its magnitude depends (among
others) on the slip velocity between the fluid and the solid and the porosity
of the system. In everyday life we encounter the action of the drag force for
example when the wind is blowing through a tree and moves its leaves or
even the entire tree. Its action is felt as well when cycling against the wind.

In chemical engineering applications the importance of the drag force is
found in its direct relation to the pressure drop over a reactor, heat exchanger
or entire plant, and therefore to the loss of energy during a process. Pressure
drop often constitutes an important issue for the design and operation of
processes. Usually a compromise has to be found between energy loss due
to drag force and variables like process selectivity and equipment size to
determine the optimal process conditions.

For the abovementioned reasons a thorough understanding of the drag force
in particulate flows is of fundamental importance for many applications in
chemical engineering. Establishing accurate drag force relations has chal-
lenged both the physics and the engineering community for many years,
and no consensus has been reached on this subject. The aim of this thesis is
to contribute to this subject area by use of lattice-Boltzmann simulations,
which will be discussed later.

1.3 Fluidisation

When a gas or liquid flows through a bed of particles contained in a vessel,
at a certain velocity the drag force becomes so large that it balances gravity
and the particles start to ‘float’ in the reactor. This phenomenon is called
fluidisation and the velocity at which it commences is called the minimum
fluidisation velocity. When the velocity is increased further the particles are

3



Chapter 1

a b c d

Figure 1.1: Various regimes in a fluidised bed reactor. a: homogeneous
expansion; b: bubbling; c: slugging; d: fast fluidisation (riser).

lifted higher and the porosity increases with it, until at the minimum bub-
bling point the excess gas starts to form bubbles. At even higher velocities
slugs may occur (bubbles as wide as the bed diameter), followed by the fast
fluidisation regime where particles are entrained over the top of the bed.
These regimes are schematically shown in figure 1.1.

The fluidisation behaviour of particles depends on their size and density.
Small particles with a low density are more easily fluidised than large and
heavy particles, as the gravity acting on the latter type is much larger. The
inter-particle forces on small particles are relatively more important than
the same forces acting on large particles, causing small particles to exhibit
a certain (velocity) range of homogeneous expansion.

Although the basics of fluidisation are conceptually simple, the hydrody-
namic behaviour of fluidised beds is extremely complex. Throughout the
bed large gradients may occur in for example the solids hold-up and veloci-
ties due to bubble passage and/or clustering, making it difficult to quantita-
tively predict the bed behaviour. This complex behaviour has caused severe
problems in the design and scale-up of these reactors in industrial practice.
It is anticipated that validated CFD-models can contribute to the successful
design and optimisation of these industrially relevant reactors.
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1.4 CFD modelling of fluidised beds

Computational fluid dynamics (CFD) is the discipline that uses computer
simulations to calculate the flow behaviour in for example a chemical re-
actor. Analytical solutions are often not available for these systems, and
CFD simulations provide a valuable method to obtain realistic estimates of
the flow behaviour. CFD models have been developed for various types of
reactors, of which the gas-solid fluidised bed and gas-liquid bubble column
are two important examples. In CFD models, the computational domain
is usually divided into cells and discretised versions of the hydrodynamical
equations are solved iteratively for each cell.

The capabilities of these models have advanced considerably in recent years
and with the ever increasing computational power solutions can be generated
relatively fast. Flow patterns can be calculated with greater accuracy and
in more detail than before. Reactor geometries that are used are becoming
more complex, and new features concerning particle growth, coalescence and
break-up of bubbles and chemical reactions are included in various models.
With these models the influence of several parameters on reactor behaviour
can be studied in a very cost efficient way.

1.5 Multi-level modelling approach

Models of fluidised beds have been developed at several scales, differing in
level of details provided in the solution and computational demands.

The largest scale model is the continuum or multi-fluid model. In this type
of model both the gas and the solid phase are represented as continuous,
interacting phases. Particles with different physical properties (such as di-
ameter and density) are treated as separate phases. The volume fraction
and average velocity of each phase are calculated for each computational
cell by solving Navier-Stokes type of equations. Closure relations are used
to describe the particle-particle interaction and distributions of e.g. parti-
cle velocities (usually a model based on the kinetic theory of granular flow)
and fluid-particle interaction (usually a combination of the Ergun- and Wen
and Yu-equations). Major advantage of this model is that it does not re-
quire much memory and for this reason it is in principle very well suited
to simulate engineering-scale fluidised beds. Disadvantages are clearly the
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large amount of assumptions made in deriving the closure relations and the
relatively low level of detail in the solution: only average properties are
calculated.

The discrete particle model simulates fluidised beds on a smaller scale. As
the name suggests, this model uses individual particles in its calculation
of the flow pattern. The coordinates and velocities of each particle are
governed by Newton’s laws. Interaction between particles is calculated either
through a hard-sphere approach (using simple collision rules) or through a
soft-sphere approach (spring-dashpot model). The gas-phase is treated as
a continuum, requiring a closure relation for the gas-particle interaction.
The increased level of detail is clearly an advantage of this model. Since
all information is available about each individual particle, it can be used
to check the assumptions made on the effective particle-particle interaction
in the continuum models, or even to derive new correlations. On the other
hand, the model is very demanding when it comes to both memory usage and
CPU-capacity of the computer, and therefore the scale at which simulations
can be conducted is limited. Even with modern computers the maximum
amount of particles that can be simulated is about 106, which is several
orders of magnitude smaller than the number of particles contained in an
industrial reactor. Besides, this model also makes an assumption about
the fluid-particle drag, which may influence the results if this correlation is
incorrect.

At the most detailed level of description, the gas flow is described on a
grid which is an order of magnitude smaller than the size of the dispersed
particles. The gas-solid interaction on the surface can then be modelled
by stick boundary conditions instead of effective drag laws. A particularly
efficient method to compute the gas flow for these types of models is the
lattice-Boltzmann method, which uses discrete time, space and velocities.
Due to this discreteness the method is very fast compared to other itera-
tive methods. However, due to the large grids (lattices) used, only small
systems can be simulated. Even though the method is easily parallelised,
the maximum number of particles currently lies in the order of several thou-
sands. This makes it impossible to simulate even laboratory-size fluidised
beds using lattice-Boltzmann simulations. Nonetheless, this method is the
obvious choice when it comes to testing drag correlations that are used in
larger scale models, or for deriving new drag correlations.

When a multi-level modelling approach is used the advantages of each model
can be used to its full capacity, while minimizing the downsides. This con-
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Multi-Fluid Model

Discrete Particle Model

Lattice-Boltzmann Model Fluid-particle interaction

Particle-particle interaction

Full-scale fluidised bed

Figure 1.2: Muli-level modelling approach.

cept is shown in figure 1.2. The lattice-Boltzmann model is used to derive a
correlation for the gas-particle interaction (drag force). This correlation is
implemented in both the discrete particle and the multi-fluid model, to make
these models as accurate as possible. The discrete particle model at its turn
is used to provide information about the particle-particle interaction, such as
the distribution of the velocity over the particles and the amount of energy
that is lost due to collisions between particles. This is used to improve the
multi-fluid model, by which simulations of engineering scale fluidised beds
will be performed for design and optimisation of these reactors.

This thesis focuses on the first step in the process described above: the
derivation of an accurate correlation for the drag force to improve the higher
scale models.

1.6 Outline of this thesis

In chapter 2 the definitions of the variables used in this thesis are given, and
an overview is presented of several drag force correlations that are known to
date. Analytical calculation of the drag is possible only in the simplest cases
that involve few particles and creeping flow conditions. In other systems the
use of approximations and empirical relations is inevitable, which has led to
a vast amount of drag relations that appeared in literature throughout the
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years. The conditions for which these correlations are valid is shown, and
the drag force in non-ideal systems is discussed. A new relation for the drag
force on a single particle in polydisperse systems is derived from theory.

Chapter 3 describes the lattice-Boltzmann model that is used in this work
and the setup of the simulations, as well as the analysis of the results. The
discrete particle model that is used in the validation in chapter 6 is discussed
briefly as well.

Chapter 4 deals with the results of the lattice-Boltzmann simulations for the
drag force in monodisperse systems. The results are compared to literature
data and equations, and a new relation is presented that fits the simulation
data better than the current literature relations.

Chapter 5 presents the drag force data for particles in bi- and polydisperse
systems. It is virtually impossible to measure the drag force on a single
particle in such a system via direct experimentation, and therefore these
simulations provide truly new data. These data are compared to the new
relation for the drag on individual particles that was derived in chapter 2
and empirical relations from literature.

The new relation is validated with experiments in chapter 6. These ex-
periments consist of pressure drop measurements over mono- and bidisperse
packed beds through which various liquids were pumped at various velocities.
Furthermore, this chapter shows the application of the new drag relation in
simulations with the discrete particle model. The simulations are compared
both qualitatively and quantitatively to experiments and discrete particle
simulations using other drag relations. A last test of the new relation is the
calculation of the inversion velocity in mixtures of particles that differ both
in size and density.

The influence of clustering on the drag force is studied in chapter 7. The
relation that is presented in chapter 4 is, like many other drag relations,
derived for homogeneous systems. In practical applications however, for-
mation of bubbles and clusters disturbs this homogeneity. The results in
chapter 7 show that both the configuration and the distance of surrounding
particles have a strong effect on the drag force that a particle experiences.
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Drag relations

Abstract

This chapter presents the current state of drag force relations. Firstly,
the definitions of the variables used in this work are given, followed by an
overview of the drag force correlations that are currently used in engineering
applications. The overview of literature relations is by no means extensive,
and is limited to the relations that are most often encountered, together
with the conditions for which they are valid.
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2.1 Definitions

When a fluid (i.e. a gas or a liquid) percolates through a bed filled with
particles, each particle experiences two forces, namely the drag force Fd and
a buoyancy type force Fb, the sum of which is the total force Ff→s that
the fluid exerts on a solid particle. The reaction force from the particles on
the fluid manifests itself in a pressure drop. The forces are related to the
pressure drop over the system as follows:

−∇P =
N

V
Ff→s = −N

V
(Fd + Fb) =

N

V
(Fd − Vp∇P ) , (2.1)

where N is the number of particles in the system, V the system volume and
Vp the volume of a single particle. Equation (2.1) can also be written as:

−∇P =
1− ε

ε

Fd

Vp
, (2.2)

with ε the bed porosity, that is, the fluid volume fraction in the system (the
exact definition of the porosity will be given later). It follows from equations
(2.1) and (2.2) that the drag force Fd is related to the total fluid-particle
interaction force as:

Ff→s =
1
ε
Fd . (2.3)

Since the buoyancy force is directly proportional to Fd, the drag force is
sometimes defined as the total force Ff→s. Much discussion in literature
has been devoted to the correct definition of the drag force, as can be seen
in the review article of Di Felice (1995). He makes strong arguments that
favour the definition of the drag force as Fd rather than the total interaction
force. The same choice was made by Foscolo et al. (1983). In this work,
the drag force is also defined as Fd. However, it should be noted that many
authors, among others Hasimoto (1959), Sangani and Acrivos (1982), Hill
et al. (2001a) and Clift et al. (1978) define the total interaction force Ff→s

as the drag force.

For comparison of drag relations from various sources it is convenient to
define a dimensionless drag force F that depends only on other dimensionless
parameters, namely the porosity ε and particle Reynolds number Re, where
the particle Reynolds number Re is defined as

Re =
ρ |U| d

µ
, (2.4)
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with ρ the fluid density, d the particle diameter, µ the fluid viscosity and
U the superficial slip velocity, defined as ε (u− v), where u represents the
local fluid velocity and v the particle velocity.

The porosity ε of a system is the fluid volume fraction in the system:

ε = 1− φ = 1− NVp
V

, (2.5)

where φ is the packing fraction of solids in the system. In this work, both ε
and φ are used to indicate the volume fraction, whatever is most convenient.

One of the few exact results for the drag force is the Stokes-Einstein relation
Fd,St = 3πµdU for a single particle (ε → 1) in the zero Reynolds number
limit. It is therefore natural to use this expression to normalise the general
drag force, so the normalised drag force is defined as:

F (ε,Re) =
|Fd|

|Fd,St| =
|Fd|

3πµd |U| . (2.6)

Note that Di Felice (1995) uses a different normalisation function, namely
the drag force on a single particle, where the influence of the Reynolds
number is taken into account. Hasimoto (1959), Zick and Homsy (1982),
Sangani and Acrivos (1982) and Hill et al. (2001a) use the normalisation
function that is used in this work, but apply it to the total force Ff→s

rather than the drag force Fd. Consequently, their expressions for F differ a
factor of ε from the normalised drag force in this thesis (see equation (2.3)).

Combining equations (2.2) and (2.6) shows that the relation between the
overall pressure drop and the normalised drag force on a particle is given
by:

ε

1− ε
(−∇P ) = 18µU

F

d2
. (2.7)

CFD models of fluidised beds often use an inter-phase momentum transfer
coefficient β to calculate the momentum flux due to gas-solid friction (see
e.g. Goldschmidt, 2001a; Gidaspow and Ettehadieh, 1983; Enwald et al.,
1996). The relation between this coefficient and the normalised drag force
used in this work is:

β = 18µε (1− ε)
F

d2
. (2.8)
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The drag force on a single particle at arbitrary Reynolds number is tradi-
tionally described via a drag coefficient Cd, defined as:

Fd = Cd (Re)
πd2

4
ρU2

2
. (2.9)

For multi-particle systems it is then assumed that the drag force can be
described by equation (2.9), multiplied by a voidage function f (ε) to account
for the presence of neighbouring particles, viz.:

Fd = Cd (Re)
πd2

4
ρU2

2
· f (ε) . (2.10)

The relation between the normalised drag force used in this work and the
drag coefficient Cd and voidage function f (ε) is then:

F (ε,Re) =
Re

24
Cd (Re) · f (ε) . (2.11)

Note that in order to obey the Stokes-Einstein relation, the drag coefficient
should obey lim

Re→0
Cd (Re) = 24/Re.

In the literature on sedimentation of particles often a hindrance function h
is used to calculate the sedimentation velocity. This function of the porosity
represents a correction factor on the terminal velocity of a single particle
(Masliyah, 1979). The relation to the normalised drag force in this work at
low Reynolds numbers is:

h =
ε

F
. (2.12)

At higher Reynolds numbers, when the drag on a single particle is not equal
to the Stokes drag, this relation becomes:

h =
εFsp

F
, (2.13)

where Fsp represents the normalised drag force on a single particle (ε → 1)
with equal Reynolds number.
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2.1.1 Polydisperse systems

The normalised drag force Fi on a sphere i in a polydisperse system is
defined analogous to equation (2.1), using the individual particle diameter
di to determine the Stokes force:

Fi =
|Fd,i|

3πµdi |U| , (2.14)

where di is the diameter of particle i.

The average drag force in a polydisperse system is related to the pressure
drop in the same way as in a monodisperse system (equation (2.7)):

ε

1− ε
∇P = −18µU 〈F 〉

〈d〉2 , (2.15)

where the average particle diameter 〈d〉 is given by

〈d〉 =
(∑

i

χi

di

)−1

, (2.16)

with χi = φi/φ the fraction of solids volume occupied by particles of type i
and the overall volume fraction of particles of type i, φi, defined as:

φi =
NiVp,i
Vtot

. (2.17)

The total solids volume fraction is equal to φ =
∑

φi and the porosity again
equals ε = 1− φ. The average drag force in equation (2.15) is defined as

〈F 〉 =
∑
i

χi

y2
i

Fi . (2.18)

where yi represents the ratio of the diameter of type i to the average diam-
eter, di/ 〈d〉.

2.2 General equations

To calculate the drag force exerted on a particle, knowledge about the flow
profile surrounding this particle is required. The drag force can then be
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obtained by integration of the stress tensor over the particle surface. The
flow around the particle obeys the Navier-Stokes equations, which for the
case of a fluid interacting with a solid phase are given by:

Continuity equation:

∂ρ

∂t
+ (∇ · ρu) = 0 . (2.19)

Momentum equation:

∂ (ρu)
∂t

+ (∇ · ρuu) = −∇P − β∆u− (∇ · τ) + ρg . (2.20)

where P is the pressure, τ the stress tensor of the fluid and β the momentum
exchange coefficient, which is directly related to the drag force and is defined
in equation (2.8).

In very simple cases these equations can be solved analytically. However,
in most cases approximations are made or the drag force is determined
empirically, as will become clear in the following sections.

2.3 Single particle

As discussed in section 2.1, when a single spherical particle moves through
a fluid, the drag force on this particle is given by the Stokes-Einstein drag
in the limit of Re → 0, so that the normalised drag force in this case is ob-
viously equal to one. The Stokes equation is only valid in the zero Reynolds
number limit. When the Reynolds number increases the (normalised) drag
increases as well, as the form drag starts to play a role. Various authors have
attempted to give an analytical solution for the drag on a single particle at
higher Reynolds numbers, as shown in the review work by Clift et al. (1978).
The first term in these approximations was first found by Oseen and is equal
to:

F (1, Re) = 1 +
3
16

Re . (2.21)

However, as Clift et al. (1978) point out, all of the solutions deviate markedly
from experimental data when Re > 3 (at most). Therefore, they concluded
that these analytical solutions have little value for Re > 1. Beyond this
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Figure 2.1: Drag force on a single particle.

value, empirical equations should be used, based on e.g. experimental data
and/or numerical solutions. The standard drag curve for a single particle
as proposed by Clift et al. (1978) is shown in figure 2.1. In this figure the
drag coefficient Cd as defined in equation (2.9) is shown as a function of the
Reynolds number. At low Reynolds numbers the Stokes-Einstein equation
forms a good approximation of the drag force. At Re > 1000 the drag
coefficient assumes an almost constant value. At Re > 3 ·105 a sudden drop
in the drag coefficient occurs, which is called the critical transition. The
subcritical range is by far the most interesting range in chemical engineering,
and this is also the range where most research was done.

Schiller and Naumann (1933) found that the normalised drag force on a
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single particle in this range is equal to:

F (1, Re) =


 1 + 0.15Re0.687 Re < 1000

0.44Re24 Re > 1000
(2.22)

Obviously, the limiting value for F in case of Re = 0 is equal to the Stokes
drag (F = 1).

Clift et al. (1978) argue that the best representation of the drag force is
obtained when the entire range of Re is split into ten subintervals: seven
intervals in the subcritical regime, one for the transition and two in the
supercritical regime. For each subinterval a different equation is used to
calculate the drag force, which makes their drag correlation very complex.
The drag curve shown in figure 2.1 was based on these equations, which are
not shown here. Turton and Levenspiel (1986) found that an equation with
only five fit-parameters,

F (1, Re) =
(
1 + 0.173Re0.657

)
+

Re

24
0.413(

1 + 16300Re−1.09
) , (2.23)

matches the experimental data in the subcritical regime just as well as the
set of seven equations - with no less than eighteen fitparameters - used by
Clift et al. (see also figure 2.1).

2.4 Regular arrays of monodisperse spheres

If more than one particle is present, the flow around each particle is in-
fluenced by the presence of the other particles, and thus the drag force is
influenced as well. The simplest case of a multi-particle system is an array
of spherical particles in the limit of zero Reynolds number, where the flow
pattern is very well-defined and periodic, leading to an equal drag force on
each particle.

Hasimoto (1959) was one of the first people to tackle this problem. Using
Fourier series he obtained spatially periodic fundamental solutions of the
Stokes equations of motion. The results for simple cubic (S.C.), body centred
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cubic (B.C.C.) and face centred cubic (F.C.C.) lattices are as follows:

F =




ε
(
1− 1.7601φ1/3 + φ− 1.5593φ2 +O

(
φ8/3

))−1
S.C.

ε
(
1− 1.7918φ1/3 + φ− 0.3292φ2 +O

(
φ8/3

))−1
B.C.C.

ε
(
1− 1.7917φ1/3 + φ− 0.3020φ2 +O

(
φ8/3

))−1
F.C.C.

(2.24)

Since only terms up to order φ2 are taken into account, the validity of these
equations is limited to low packing fractions (φ < 0.1). Sangani and Acrivos
(1982) modified Hasimoto’s method and calculated the drag force in cubic
arrays over the complete porosity range. Converged results for several values
of φ over the whole range are listed in their article. Their extended equation
for simple cubic lattices is given by:

F = ε
(
1− 1.7601φ1/3 + φ− 1.5593φ2

+ 3.9799φ8/3 − 3.0734φ10/3 +O
(
φ11/3

))−1
, (2.25)

which is very accurate for packing fractions up to φ = 0.2 and fairly accurate
beyond this value. They also provide coefficients for all three lattices for
a series expansion up to order φ10, which provides accurate results up to
φ = 0.6 · φmax , and for BCC-lattices at even higher values.

Zick and Homsy (1982) solved an integral equation over the surface of the
spheres to obtain the drag force as a function of porosity. Their results agree
well with those obtained by Sangani and Acrivos (1982).

Hill et al. (2001a) used lattice-Boltzmann simulations to study the drag force
in arrays of spheres. The results agree very well with the results of Zick and
Homsy (1982) and Sangani and Acrivos (1982). The effect of increasing
Reynolds numbers on the drag force in arrays of spheres was also studied
using lattice-Boltzmann simulations. Hill et al. (2001b) found that for low
Reynolds numbers, the drag increases quadratically with Reynolds. For
Re > 40 they found a linear dependence on the Reynolds number. At high
Reynolds numbers the drag was found to depend on the direction of the flow
as well, which was not observed for low Reynolds numbers.
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2.5 Random arrays of monodisperse spheres

2.5.1 Low Reynolds numbers

There are two approaches for evaluating the drag force in random multi-
particle systems at low Reynolds numbers. The first one views the porous
medium as a bundle of tubes and calculates the drag force based on the
analogy with the drag force of a fluid flowing through a tube. Important
parameters are the width of the pores (tubes) and the path length of the
fluid. This approach works quite well in dense systems. In more dilute
systems no separate channels can be distinguished, so in these cases the
system is usually viewed as a collection of submerged objects and the drag
relations are usually based on the drag force on a single particle, taking into
account some correction for the presence of other particles.

Batchelor (1972) followed the submerged particle approach. He calculated
the influence of the interaction between particles in dilute random systems
on the drag force, which led to the following equation:

F (ε, 0) =
ε

1− 6.55 (1− ε)
, (2.26)

which is valid at very low particle volume fractions (note that the equation
has a singular point at ε ≈ 0.853 and even shows negative drag forces at
lower porosities) and in the absence of inter-particle forces.

The Kozeny-Carman equation is a typical example of an equation that views
the porous medium as a collection of channels. At low Reynolds numbers,
the relation between the fluid flow through a dense porous medium and the
pressure drop over this system can be described in general by the Darcy
equation:

−∇P =
1
κ
µU . (2.27)

In this equation, κ is the permeability of the medium. The permeability
depends, in principle, on the detailed geometrical structure of the medium,
however in practice it is well-described by the Kozeny-Carman equation
(Carman, 1937):

κ =
εr2

h

k
, (2.28)
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where rh is the hydraulic radius and k is a constant. The hydraulic radius
is defined as the ratio of the pore volume to the surface area of the medium.
For a packing of spheres with diameter d the hydraulic radius is equal to:

rh =
d

6
ε

(1− ε)
(2.29)

Substituting equations (2.28) and (2.29) in equation (2.27) gives the follow-
ing result for the pressure drop over a porous system:

−∇P = 36k
(1− ε)2

ε3

µU
d2

(2.30)

In terms of the normalised drag force on a single sphere, the Kozeny-Carman
equation predicts that (see equation (2.6)):

F (ε, 0) = 2k
(1− ε)

ε2
(2.31)

The Kozeny-constant k was experimentally found to be close to 5 (Carman,
1937). Fand et al. (1987) measured an average value of k = 5.34.

The Kozeny-Carman approximation provides a reasonably accurate descrip-
tion of fluid-solid drag. However, there are some limitations. Firstly, the
Kozeny-Carman equation was derived for dense porous systems. It is obvi-
ously not valid in dilute systems, since the normalised drag force approaches
F = 0 for ε → 1, where its limit should be the Stokes drag F = 1. Secondly,
the equation is based on the assumption that all pores have more or less
equal sizes. If this is not true, a lower value for the Kozeny-constant will be
found. Thirdly, it is assumed that the system is isotropic: the direction of
the flow should not make a difference for the permeability of a system. If
there are more pores in one direction than in the other direction or if there
is a variation in pore size between various directions, the Kozeny constant
will depend on the direction of the flow (Thies-Weesie and Philipse, 1994).
Finally, the validity of the Kozeny-Carman equation and its derivatives is
limited to fluid flow in the limit of zero Reynolds number.

2.5.2 Intermediate and higher Reynolds numbers

At higher Reynolds numbers no theoretical derivation of the drag force is
available. All results are empirical, obtained from measurement of either
the pressure drop or sedimentation velocity.
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One of the most often used equations for the pressure drop in chemical
engineering is the Ergun-equation, −∇P = 150 (1−ε)2

ε3
µU
d2 + 1.75

(1−ε)
ε3

ρU2

d ,
(Ergun, 1952). For the normalised drag force this corresponds to:

F =
150
18
(1− ε)

ε2
+ 1.75

Re

18ε2
, (2.32)

where the Kozeny-Carman equation is recognised in the first term (viscous
forces), and a Reynolds-dependent term was added to account for the inertial
forces. As discussed in the previous section, the Kozeny-Carman equation
is not valid in high-porosity systems, and so the Ergun equation cannot be
used for these systems either. Although Ergun used only a limited porosity
range in his experiments (ε = 0.43−0.54), the equation is currently used for
porosities up to 0.8 (see e.g. Enwald et al., 1996). Furthermore, it should be
noted that Ergun used crushed porous material for his experiments with a
range of sizes. As will become clear in chapter 5, this size range results in a
lower drag force compared to systems where perfect monodisperse spheres
are used.

Ergun assumes that the total drag force is the sum of the viscous and inertial
forces. Other authors have found relationships of the type

Fd = (Fα
v + Fα

i )
1/α , (2.33)

where Fv is the viscous drag and Fi the drag due to inertial effects, and α is
either a constant or a function of the porosity (see e.g. Gibilaro et al., 1986;
Di Felice, 1995).

Fand et al. (1987) concluded from their experiments in packed beds that
three main regimes exist in fluid flow through packed beds. The first regime
at low Reynolds numbers (Re < 2.3) is the Darcy flow, where the drag (and
thus pressure drop) are given by the Kozeny-Carman equation mentioned
above (equation (2.31)). The Kozeny-constant is equal to 5.34 according to
their work. Ergun type equations apply at higher Reynolds numbers:

F =
A

18
(1− ε)

ε2
+B

Re

18ε2
. (2.34)

In the Forchheimer-regime, 5 < Re < 80, the coefficients in equation (2.34)
take the values A = 182 and B = 1.92. At higher Reynolds numbers tur-
bulence starts developing in the porous system, and for Re > 120 all data
again fall onto a straight line, with the coefficients A = 225 and B = 1.61.
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In between the three main regimes transition regimes are found where the
regime gradually changes. The experiments of Fand et al. (1987) were con-
ducted in random dense packed beds, with porosities varying from 0.342−
0.360. The validity of the equations beyond these values was not tested,
although their formulation suggests they are valid over a large range of
porosities. The maximum Reynolds number for which experiments were
done was 408.

An equation of a completely different type that has found widespread use
in CFD-modelling is the Wen and Yu-equation (Wen and Yu, 1966):

F =
Re

24
Cd (Re) ε−3.65 , (2.35)

with the drag coefficient Cd (Re) given by:

Cd (Re) =




24
Re

(
1 + 0.15Re0.687

)
Re < 1000

0.44 Re > 1000
(2.36)

In the limit of ε → 1 (single particle) F approaches the Schiller and Nauman-
drag relation. When other particles are present the movement is hindered,
represented by the term ε−3.65. In CFD-models, this equation is often en-
countered to describe the drag in dilute regions (ε > 0.8), where the Ergun-
equation is not valid (see e.g. Enwald et al., 1996). Wen and Yu based their
equation on previous sedimentation research by Richardson and Zaki (1954),
who stated that

U

Ut
= εn , (2.37)

with U the ‘superficial’ sedimentation velocity of the assembly of particles
(that is, the velocity multiplied by the porosity ε) and Ut the terminal
velocity of a single particle. The power n was found to be a function of the
Reynolds number:

n =




4.65 Re < 0.2

4.35Re−0.03 0.2 < Re < 1

4.45Re−0.1 1 < Re < 500

2.39 Re > 500
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In the original work n was a function of the particle to tube diameter ratio
d/D as well, but this dependency was not confirmed in later research (Di
Felice, 1995). For low Reynolds numbers, when F ∼ U , equation (2.37) is
similar to:

F =
Re

24
Cdε

−(n−1) , (2.38)

whereas for high Reynolds numbers, when F ∼ U2, equation (2.37) is similar
to

F =
Re

24
Cdε

−(2n−1) . (2.39)

Consequently, for Re < 0.2 we get F ∼ ε−3.65 and for Re > 500 we find F ∼
ε−3.78. Therefore, in the Wen and Yu equation a constant power −3.65 is
assumed in the calculation of the drag force over the entire Reynolds number
range. Di Felice (1994) noticed that the power was weakly dependent on
the Reynolds number and proposed the relation

F =
Re

24
Cd (Re) εp , (2.40)

with p given by

p = 3.7− 0.65 exp
{
− (1.5− log (Re))2

2

}
. (2.41)

This approach is particularly popular in sedimentation literature and liquid
fluidisation. Many researchers proposed relations for Cd and n or p as a
function of Reynolds or Galileo numbers. For an overview of various relations
see Di Felice (1995).

Hill et al. (2001b) used lattice-Boltzmann simulations to study the drag
force in porous systems. Equation (2.42) shows their results:

F = F0 +
1
2
F3Re , (2.42)

with

F0 =



(1− φ)

1+(3/
√

2)
√
φ+(135/64)φ lnφ+16.14φ

1+0.681φ−8.48φ2+8.16φ3 φ < 0.4

10 φ

(1−φ)2
φ > 0.4
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F3 = 0.0673 + 0.212φ+
0.0232
(1− φ)5

,

where it should be remembered that φ = 1− ε. F0 represents the drag force
in the limit of Re = 0. In this case the Kozeny-Carman equation is used
for dense packings, while the drag force in more dilute systems is derived
from the equation that was proposed by Kim and Russell (1985). Hill et al.
(2001b) further report that at very low Reynolds numbers (Re < 1) the
drag force is quadratic in the Reynolds number: F = F0 + (1/4)F1Re2.
Although according to their work equation (2.42) is valid when Re > 40,
the differences with the quadratic equation in the low Reynolds number
regime are very small, and the limit for Re = 0 is the same. Therefore,
for practical purposes equation (2.42) can be used over the entire range of
Reynolds numbers, which has the advantage that there is no discontinuity
in the representation. The equation above was derived from simulations up
to Re = 150.

2.6 Random bi- and polydisperse systems

2.6.1 Overall pressure drop

The Kozeny-Carman equation (equation (2.30)) is, in principle, valid for
all random porous media, independent of the details of the geometry and
hence of the particle shapes and sizes, provided the system is dense and
homogeneous. The correct expression for the hydraulic radius in a mixture
of spheres is given by:

rh =
〈d〉
6

ε

(1− ε)
, (2.43)

with the average diameter 〈d〉 defined by equation (2.16). By comparing
equation (2.43) to equation (2.29) we find that the pressure drop over the
mixed system is given by the same equation as for monodisperse systems
(equation (2.30)), where the diameter is replaced by the average diameter
of the mixture. The Kozeny-constant k is independent of the details of
the porous medium. For binary systems, Thies-Weesie and Philipse (1994)
found a value for the Kozeny-constant of k = 3.92 in their experiments.
From lattice-Boltzmann simulations of similar systems Maier et al. (1999)
arrived at a value k ≈ 5.0. The difference is probably due to the sinter-
ing necessary to measure the porosity in the experiments. The measured
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porosity is slightly lower than the actual porosity during the experiments,
resulting in a lower experimental value for k.

As was shown by Fand et al. (1987), the same method of replacing d by 〈d〉
is also valid at higher Reynolds numbers, where other drag relations apply.

2.6.2 Drag force on individual particles

In monodisperse media, the drag force on a single particle is (more or less)
equal to 1/N times the total drag force in the system. For bi- and poly-
disperse systems this is not necessarily true. Unfortunately, up to now it
has not been possible to measure the drag on a single individual particle
in a bidisperse system. Although several methods have been developed to
measure the drag force on a particle directly (see e.g. Liang et al., 1996;
Katoshevski et al., 2001; Zhu et al., 2003), these are all limited to single
particles or particles that are surrounded by only a few others, which can-
not be representative of a bi- or polydisperse system. A fair amount of
research was done on sedimentation of bi- and polydisperse mixtures (see
e.g. Mirza and Richardson, 1979; Biesheuvel et al., 2001). However, most
of this data is concerned with the sedimentation velocities of each particle
species rather than with the drag force and thus provides only indirect infor-
mation on the drag force. It should be noted that in most cases assumptions
concerning the local porosity and composition of the mixture are made that
even further question the validity of the model. As will be shown later,
it is this individual drag that turns out to be very different from what is
commonly accepted.

Batchelor (1982) derived an equation for the falling velocity of spheres in
dilute polydisperse suspensions at low Reynolds numbers based on pair in-
teractions. From his work it follows that the normalised drag force in dilute
systems is equal to

Fi =
ε

1 +
∑
j
Sijφj

. (2.44)

It was shown before that the coefficient Sij in a monodisperse system in
the absence of inter-particle forces is equal to -6.55 (see equation (2.26)).
In polydisperse systems Sii assumes the same value. The other coefficients
depend on the diameter and density ratios, and are not symmetrical, that
is Sij �= Sji (Batchelor and Wen, 1982).
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The approach that is most often encountered in CFD-modelling to calculate
the drag on a single particle is to assume that a particle experiences the same
normalised drag force as it would in a monodisperse system of equal porosity,
with the average Reynolds number Re replaced by the individual valueRei =
ρdiU/µ (see e.g. Hoomans, 1999). However, this approach usually results
in an incorrect overall pressure drop, as is easily demonstrated for Re = 0
using the Kozeny-Carman equation. Assuming an equal normalised drag
force of Fi = 2k(1− ε)/ε2 for all particles adds up to an overall pressure
drop equal to:

−∇P =
1
εV

∑
i

NiFd,i = 36kµU
(1− ε)2

ε3

∑
i
Nidi∑

i
Nid3

i

, (2.45)

whereas the value for the pressure drop in the Kozeny-Carman approxima-
tion is given by (see equations (2.27), (2.28) and (2.43)):

−∇P = 36kµU
(1− ε)2

ε3

1
〈d〉2 = 36kµU

(1− ε)2

ε3




∑
i
Nid

2
i∑

i
Nid3

i




2

. (2.46)

Syamlal (1985) adjusted the Ergun and Wen and Yu-equations to polydis-
perse systems as follows:

Fi =
150
18

φi
ε2
+ 1.75

Re

18ε2

φi
1− ε

, (2.47)

Fi =
Re

24
Cd

φi
1− ε

· f (ε) . (2.48)

However, this approach does not predict the Kozeny-Carman pressure drop
either.

A new approach that does result in the average drag force according to the
Kozeny-Carman equation (where d is replaced by 〈d〉) will be presented in
section 2.6.3.

Patwardhan and Tien (1985) assumed that the porosity that a particle ex-
periences is mainly determined by the ratio of the average pore size to its
diameter. This means that in a binary mixture the smaller particles will
experience a larger porosity, as the pores are large compared to their diam-
eter. The larger particles however will experience a relatively low porosity
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since the ratio of the pore size to the particle diameter is much smaller. The
average space available for each particle is represented by a layer of thickness
δ surrounding this particle. For monodisperse systems this δ is evaluated
from

1
φ
=

(
1 +

δ

d

)3

, (2.49)

which is equivalent to

δ = d
(
φ−1/3 − 1

)
. (2.50)

The effective porosity for type i in a polydisperse suspension is evaluated
as:

1
φi
=

(
1 +

δ

di

)3

. (2.51)

This effective porosity is used in the calculation of the drag force on a par-
ticle, for which any drag relation may be used. The main difficulty of this
approach lies in evaluating δ in a mixture. Patwardhan and Tien approxi-
mate this by:

δ = davg

(
φ−1/3 − 1

)
; , (2.52)

using davg =
∑
i
χidi. However, this choice for davg seems to be rather ad

hoc, and no justification is given. A significant improvement is achieved by
using davg = 〈d〉 as defined in equation (2.16). The difference is especially
noteworthy in the case of high packing fractions and/or extreme diameter
ratios. Note that with a little more work the third order polynomial may
also be solved exactly.

Koo and Sangani (2002) proposed various adjustments to the effective me-
dium theory that extend its validity to bidisperse systems. This kind of
theories calculates the effective properties of suspensions by solving averaged
equations taking into account some of the interactions between particles.
The three models differ in choice of the exclusion radius R of the particles
and the properties used for the fluid within this radius. The model that gives
the best results for monodisperse systems is limited to low volume fractions
of the smaller particles in binary systems. Koo and Sangani (2002) tested
the validity of their theories with simulations using a multipole expansion
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method. The drag forces were calculated in mixtures with two sizes ratios
(d1/d2 = 0.5 and d1/d2 = 0.7) at two porosities (ε = 0.65 and ε = 0.90).
To our knowledge, this is the only available data in literature on the drag
force on individual particles in bidisperse systems. The predictions from the
effective medium theory were a good approximation of the simulation values
at low packing fractions (φ = 0.1), whereas for higher packing fractions
(φ = 0.35) the drag force was overestimated by 7% on average.

2.6.3 A new drag relation for polydisperse systems

In the framework of the Kozeny-Carman approximation, the correct overall
pressure drop is found when one of the following expressions is used for the
drag force on individual particles:

Fi = yiFmono or Fi = y2
i Fmono ,

where yi = di/〈d〉 and Fmono stands for the normalised drag force in a
monodisperse system of equal porosity. The most general form for Fi that
saisfies the Kozeny-Carman expression for the pressure drop is then:

Fi =
(
(1− p) yi + py2

i

)
Fmono , (2.53)

with p a yet unknown variable, which may be determined from the limit
di/dj → 0, while φi and φ are kept constant. In that limit yi = χi, and
therefore equation (2.53) reduces to

lim
di/dj→0

Fi = χi (1− p+ pχi)Fmono . (2.54)

The same system may also be considered as a system where all particles
except type i are infinitely large. The drag force on particles of type i
should thus be equal to the drag force in a monodisperse system consisting
of the same particles, with an effective volume of V − ∑

j �=i

NjVj . This can be

shown to be equal to:

lim
di/dj→0

Fi = χi (1− φ+ φχi)Fmono . (2.55)

Comparing to equation (2.53) gives p = φ. Thus, the drag force on a single
particle can be represented by:

Fi =
(
(1− φ) yi + φy2

i

)
Fmono . (2.56)
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This equation will be compared to our results from lattice-Boltzmann sim-
ulations in chapter 5.
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Numerical methods

Abstract

This chapter describes the numerical methods that are used in this work.
The drag force simulations are performed with a lattice-Boltzmann model,
which describes the fluid phase with discrete time, space and velocities. The
solid particles are mapped on this grid, and the drag force is measured from
the momentum change on the boundary nodes. The simulation setup and
analysis of the results are explained here as well.

The discrete particle model, which is used in the validation of the drag
relation, models the gas phase as a continuum and requires a closure relation
for the gas-particle interaction. For the particle-particle and/or particle-wall
interaction a collision model is invoked which is based either on the hard
sphere or on the soft sphere approach.
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3.1 Introduction

The enormous increase in computer capacities in the last decades has led
to a strong development in the field of Computational Fluid Dynamics.
Several models were developed for various systems (e.g. liquid-gas or gas-
solid) at different levels of detail and accuracy. This thesis focuses on the
modelling of fluid-solid systems. For the largest scale models, a number of
closures are required to account for the effective solid-solid and fluid-solid
interaction (drag force), since even with present-day computers memory and
processor speed are far from sufficient to obtain results with greater detail
in a reasonable amount of time. These effective interactions are often based
on theoretical or empirical relations from literature, but correlations may
also be derived from more detailed computer simulations. In this thesis
a new correlation for the particle-fluid interaction is derived from lattice-
Boltzmann simulations. This model is based on a discretised version of the
Boltzmann-equation and is particularly suited ro resolve the fluid flow on
a scale smaller than the particle size, thus providing accurate information
on the interaction force. The lattice-Boltzmann model used in this work is
described in section 3.2.

The drag relation that was derived from the lattice-Boltzmann simulation
results was tested in discrete particle model simulations. Since the fluid
phase in this model is calculated at a resolution greater than the particle
sizes, a closure relation is necessary to calculate the interaction between the
phases. The discrete particle model is described in section 3.5.

3.2 Lattice-Boltzmann method

The lattice-Boltzmann method originates from lattice-gas cellular automata,
a simulation method that uses discrete time, space, velocity and mass. It
is faster and uses less memory than e.g. molecular dynamics simulations,
whereas results with respect to the large scale fluid motion can be very
similar. In lattice-gas simulations fluid particles move on a fixed lattice.
The fluid particles can only be present at lattice sites, and velocities are
discrete in such a way that each particle moves from grid point to grid
point in exactly one time step. Two particles at the same grid point are
not allowed to have equal velocities. Each simulation time step consists
of two parts: propagation and collision. The propagation to the next grid
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Figure 3.1: Propagation step in lattice-gas cellular automata.

point is shown in figure 3.1. When a particle arrives at the new grid point
it collides with particles coming from other directions, thereby preserving
total mass and momentum. An example is shown in figure 3.2. If there are
several possibilities to preserve mass and momentum starting from the same
initial configuration, a choice between the possibilities can be made either
at random or according to a predetermined scheme.

The lattice-gas method is a very efficient way to simulate hydrodynamics,
and - because of its discreteness - unconditionally stable. However, due
to the same discreteness it also suffers from statistical noise, so massive
averaging in time and/or space, as well as ensemble averaging, is required
before reliable results are obtained. To overcome this problem, the lattice-
Boltzmann method was introduced by McNamara and Zanetti (1988). In-
stead of discrete particles this method uses an ensemble averaged particle
occupation number, which is equivalent to the single-particle distribution

Figure 3.2: Collision step in lattice-gas cellular automata.
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Figure 3.3: D3Q19-lattice used in this work.

function which appears in the Boltzmann-equation (mass is no longer a dis-
crete variable). The ensemble averaged equations of motion of the discrete
lattice gas method turn out to yield a discretised version of the Boltzmann
equation.

The model, and also the code, that is used in this work was developed by
Ladd (1994a), and is briefly described below. It uses a nineteen velocity
cubical grid (D3Q19, see the classification of Qian et al. (1992)), as shown
in figure 3.3. The nineteen velocities are formed by the (100)- and (110)-
directions of the cube, and particles at rest (zero velocity). The magnitudes
of the velocities are thus:

• c = 1 for the (100)-directions

• c =
√
2 for the (110)-directions

• c = 0 for the rest particles.

The update of the discretised velocity distribution n can be represented as
follows:

ni (r+ ci, t+ 1) = ni (r, t) + ∆i (n (r, t)) . (3.1)
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Equation (3.1) is the basic equation of the lattice-Boltzmann method. The
second term on the right hand side represents the change in the distribution
function due to collision. The post-collision distribution is then shifted to
the next lattice site in the direction of the velocity ci. Each time step thus
consists of a propagation step and a collision (or relaxation) step, similar
to the lattice-gas cellular automata. The collision step will be explained in
more detail in section 3.2.2.

The hydrodynamic fields (density ρ, momentum j and stress Π) are calcu-
lated from the moments of the velocity distribution:

ρ =
∑
i

ni , (3.2)

j =
∑
i

nici , (3.3)

Π =
∑
i

nicici . (3.4)

3.2.1 Equilibrium distribution

In case of equilibrium the velocity distribution should not change during a
collision. The moments of the equilibrium distribution function neqi define
the equilibrium density, momentum and momentum flux:

ρeq =
∑
i

neqi , (3.5)

jeq =
∑
i

neqi ci = ρu , (3.6)

Πeq =
∑
i

neqi cici = ρc2sI+ ρuu . (3.7)

In these equations u is the local gas velocity, cs is the speed of sound and
ρc2s is equal to the pressure. The value for the speed of sound is restricted to
prevent the simulations from becoming unstable, where an optimum value
is c2s = 1/3, which is used in this work. The equilibrium distribution for the
D3Q19-lattice is (Ladd and Verberg, 2001):

neqi = aciρ

[
1 +

u · ci
c2s

+
(u · ci)2
2c4s

− u2

2c2s

]
, (3.8)
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a0 =
1
3
, a1 =

1
18

, a
√

2 =
1
36

.

3.2.2 Relaxation

When the fluid arrives at the new site after propagation, a collision occurs,
which is represented by a relaxation towards the equilibrium distribution.
The speed at which this relaxation occurs is a measure for the viscosity.
During the collision the total mass and momentum should be preserved for
each lattice site.

There are two ways of programming the collision step. The first possibility
is by using the Bhatnagar-Gross-Krook approach (Qian et al., 1992; Bhat-
nagar et al., 1954). This is a simple method to achieve relaxation towards
equilibrium as shown in the following equation:

n′
i = ni − 1

τ
(ni − neqi ) , (3.9)

where n′
i is the distribution function immediately after the collision and ni

the distribution just before collision. In this approach the relaxation time τ
is a measure for viscosity.

The second possibility, which is used in this work, is to use the stress tensor
update (Ladd, 1994a). This method has the advantage that it is possible
to choose a bulk viscosity in the simulation as well. The relaxation of the
stress tensor is as follows:

Π′
αβ = Π

eq
αβ+(1 + λ)

(
Παβ −Πeq

αβ

)
+
1
3
(1 + λB)

(
Πγγ −Πeq

γγ

)
δαβ . (3.10)

In this equation Π′ is the stress tensor after collision, Π is the stress tensor
before collision andΠ is the traceless stress tensor. Furthermore, λ is related
to the viscosity, and λB determines the bulk viscosity of the fluid. For
c2s = 1/3 these are represented by:

µ = −1
6
ρ

(
2
λ
+ 1

)
, (3.11)

µB = −1
3
ρ

(
2
3λB

+
1
3

)
. (3.12)
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The values of λ and λB are limited by −2 < λ < 0 to ensure a realistic value
of the viscosity. The value of λB is set to −1 in this work (no contribution
of bulk viscosity).

With the new stress tensor the distribution after collision is determined:

ni +∆i (n) = aci

(
ρ+

j · ci
c2s

+
(ρuu+Πneq ′) :

(
cici − c2sI

)
c4s

)
, (3.13)

with Πneq = Π−Πeq , and I the identity tensor.

3.2.3 Boundary conditions

The most straight-forward type of boundary condition in a lattice-Boltz-
mann simulation is the periodic boundary condition. This corresponds to a
case where the system has no walls, and the simulation volume is infinitely
repeated. Fluid that leaves the system on one side comes back in on the
other side. This corresponds to a case where the system has no confining
walls.

Solid boundaries (system walls or objects in the flow) can be chosen on the
grid points or in the middle of two grid points. In this work the latter option
is used. Bounce back boundary condition are used, where the fluid moves
back in the direction from where it came:

ni (r, t+ 1) = n−i (r, t) , (3.14)

with −i being the link opposite to i. This results in a fluid velocity of zero in
the middle of sites r and r−ci (thus at the boundary node), corresponding to
no-slip conditions. When the boundary is moving, the bounce back method
is adjusted in such a way that the velocity in between the sites equals the
velocity of the boundary:

ni (r, t+ 1) = n−i (r, t) + 2aciρ
ub · ci
c2s

. (3.15)

3.2.4 Validity of simulation method

The lattice-Boltzmann method is a simplified model of a liquid or gas, and
the validity of the results obtained from such a simple model is not evident.
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Contrary to continuum simulations where a discretised version of the widely
accepted Navier-Stokes equations for fluid flow is solved, or molecular dy-
namics simulations which are based on Newtonian equations of motion for
each molecule, the lattice-Boltzmann method only simulates a ‘real’ gas or
liquid flow when some special conditions are fulfilled. In particular, Chen
et al. (1992) (among others) have shown that a Chapman-Enskog expansion
of the lattice-Boltzmann results in the Navier-Stokes equations, provided
that conditions on the lattice symmetry and Mach number are met. The first
condition states that the lattice must be symmetric up to the fourth order
tensor, which is the case for the D3Q19-model used in this work (Ladd and
Verberg, 2001). The second condition requires the Mach number (M = u/cs)
in the simulations to be low (M < 0.3). At high Mach-numbers, the density
in lattice-Boltzmann simulations can no longer be considered constant and
unrealistic effects may occur.

The recovery of the Navier-Stokes equations from the lattice-Boltzmann
equation proves that the model is capable of simulating actual flow phe-
nomena.

3.3 Modelling large solid particles

Since space is discrete in lattice-Boltzmann simulations and boundary nodes
are located only in the middle of links between fluid nodes, curved boun-
daries, such as the surface of large solid spheres, can only be modeled approx-
imately. The boundaries are mapped on the grid by locating the boundary
nodes that are closest to the actual boundaries. This is shown in figure 3.4.
The interaction between fluid and solid is equal to the momentum change
of the fluid at the boundary nodes. Summation of the interaction over all
boundary nodes forming an object gives the total force on the object.

Due to this mapping the shape and diameter of the particle are clearly
different from spherical. Therefore it is necessary to calibrate the effective
diameter of the particle by simulating a single particle at low Reynolds num-
ber and measuring the drag force that the fluid exerts on it. The effective
diameter of the particle is then that value for which the Stokes drag (or the
Hasimoto drag (Hasimoto, 1959)) equals the drag on the simulated particle.
The effective diameter of a particle depends on the original particle size d0

and the viscosity of the fluid. Figure 3.5 shows the values for the effective
radius that were provided with the code and two extra simulated values, all
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Figure 3.4: Mapping of a spherical particle on the lattice.

measured with a kinematic viscosity ν = 0.0008333 (the value that we used
in most of our simulations). The effective diameter of the particle for this
viscosity fits the equation given by

d

d0
=

1
1.17 + 0.85d0

, (3.16)

which is the line shown in figure 3.5. The effective diameter may also depend
on system porosity and Reynolds number, although these last influences
cannot be measured well since no exact theoretical correlations are available
to compare the simulations to. Therefore it is assumed to be constant for
all values of the porosity and Reynolds numbers.

As Nguyen and Ladd (2002) point out, the continuous relocating of bounda-
ry nodes for moving particles leads to small fluctuations in particle volume
and thus drag force, which can be reduced by choosing optimal diameters d0.
Where possible, these diameters were used in this work, although it was not
possible to find a good combination of diameters for all bi- and polydisperse
systems. However, since the fluctuations are small, especially when large
particles are involved (d0 > 4 − 6 lattice sites), and since the results are
averaged over multiple particles, several configurations and a large period of
time, these fluctuations are not expected to influence the results described
in this thesis.
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Figure 3.5: Effective diameter of particles in LBM-simulations for a viscosity
of ν = 0.0008333.

3.3.1 Finite size effects

The lattice-Boltzmann method is based on discretisation of time and space,
and like with any other method that uses discretisation the resolution of
the grid might influence the results. In case of low grid resolutions the
number of lattice points in a pore is very low, resulting in a poor resolution
of flow profiles and thus less accurate values for the drag force. The lattice-
Boltzmann method is known to be second order with respect to the spatial
discretisation, although for small particles this is not always observed due to
the change in the shape of the particles with increasing grid resolution (Hill
et al., 2001b). Figure 3.6 shows the simulation results for the drag force in
a monodisperse system of porosity ε = 0.5. For these simulations particles
with d0 = 9.6, 12.4, 16.4, and 24.4 were used. The results scale indeed as
1/r2

h, and the line shows the extrapolation to rh = ∞. Figure 3.7 shows
similar results for the drag force in bidisperse systems at ε = 0.5. In this
case, the drag force for both particle types scales linearly with 1/r2

h, as well
as the average drag force calculated from the individual forces.

Even when the largest particles are used, the simulation results still show
a deviation from the extrapolated drag force at rh = ∞. Therefore, simu-
lations with two different values of rh were performed for each system, and
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Figure 3.6: Finite size effects for the drag force in monodisperse systems
with ε = 0.5.

Figure 3.7: Finite size effects for the drag force in bidisperse systems with
ε = 0.5.
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the results were extrapolated. The dependency was found to be similar for
other porosities and over a large range of Reynolds numbers, although for
the highest Reynolds numbers some deviations were found, especially when
very small particles were used. For this reason, these small particles were
not used for the high Reynolds number simulations.

3.4 Simulation setup

3.4.1 Initial configurations

For the simulations systems of spheres that are packed randomly were used.
Although this may look obvious, it should be noticed that there is no clear
definition of a ‘random system’. Several papers have appeared in literature
that try to define a random porous system, based on e.g. the number of
contact points with neighbouring particles or the distance to the neighbours
(see e.g. To and Stachurski, 2004; Tewari and Gokhale, 2004). These meth-
ods are all based on statistical analysis of monodisperse systems that consist
of many particles (> 104). The systems in this work do not contain enough
particles to check randomness statistically. Moreover, for bi- and polydis-
perse mixtures no such tests are available. However, it is assumed that
the Monte-Carlo method described below produces configurations that are
sufficiently random for this work (i.e. no dominant orientation of pores, no
formation of channels between particles). Averaging over several simulations
with different initial configurations will minimize statistical fluctuations in
the results caused by the low number of particles.

Randomisation procedure

Monodisperse systems are randomised using a standard Monte Carlo pro-
cedure (Frenkel and Smit, 2002). All particles are placed initially in an
ordered configuration (simple cubic, body centred cubic or face centred cu-
bic). Subsequently, each particle is moved randomly. Whether or not a
move is accepted depends on the overlap: if there is any overlap with other
particles at the new position, the move is rejected. In case of no overlap,
the move is accepted and the coordinates of the particle are updated.

For bidisperse and polydisperse systems a slightly different algorithm is used,
since the difference in radius between the particles and the composition of the
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mixture sets extra limits on the porosity that can be reached in an ordered
system without overlap. The desired number of particles is placed in an
ordered position again, with the same options as for monodisperse systems.
All diameters are set initially to the smallest diameter in the system. The
large particles are chosen at random until the desired mixture composition
is reached. When the diameters of the large particles are set to their actual
size, overlap between neighbours may occur. This results in a potential
energy E of the system, which is set to be equivalent to:

E =
( |r1 − r2|
R1 +R2

)n

(3.17)

in case of overlapping particles and E = 0 otherwise. In equation (3.17), ri
stands for the particle position and Ri is its radius. The variable n is gradu-
ally increased during the process so that the interaction energy approaches
that of hard spheres. The particles are moved at random, similar to the
monodisperse case, but this time the acceptance of a move is determined
by the potential energy of the system. If the potential energy decreases or
stays equal, a move is always accepted. If the potential energy increases
(more overlap in the new situation), a new random number is chosen. If
this number is greater than a critical value, the move is rejected, otherwise
it is accepted. The critical value is determined by the difference in energy
between the old and new state:

c = exp (k (Eold − Enew)) . (3.18)

k is a constant and necessary to obtain reasonably small possibilities of
acceptance. It is usually set to 50. It is clear that when the difference in
energy between old and new state becomes larger (stronger overlap), the
chance of acceptation of the move becomes smaller. In this way the energy
of the system becomes smaller and smaller, until a final state is reached
with very little overlap between the particles. All particle radii are then
multiplied with a factor that eliminates all overlap between the particles,
which will change the porosity slightly. When there is no overlap the scaling
factor is equal to 1 and the porosity is not changed. Only when the change
in porosity is less than 0.2 % the configuration is accepted as an initial state
for the lattice-Boltzmann simulations.
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3.4.2 Particle velocities

In the simulations all particles are given the same velocity, and a backflow
flag is used that counteracts the force of the particles exerted on the fluid.
However, the direction of the velocity has a strong influence on the path of
the fluid through the voids, and thus on the drag force that the particles
experience. Especially at high Reynolds numbers there may be a big dif-
ference between the interaction force of fluid being forced through a narrow
pore, or fluid being able to move around the same pore. To prevent any
effects of the direction of flow this is chosen at random and results from
several simulations using different configurations and directions of flow are
averaged.

3.4.3 Simulation procedure

An initial random configuration was made as described in section 3.4.1. All
particles in this configuration were given the same velocity in a random direc-
tion. Variation in Reynolds number was obtained by varying the magnitude
of the velocities. For very high Reynolds numbers it was necessary to adjust
the particle sizes as well, as variation of only the velocity resulted in unstable
simulations. A backflow flag was used, which applies a uniform force to the
fluid that balances the drag force of the particles. The effect of this force is
that the fluid moves in the opposite direction of the particles, thereby ensur-
ing that the total momentum flux through the system is equal to zero. The
resulting fluid velocity is then uf = −up · (1− ε) /ε. The superficial velocity
is then exactly equal to the particle velocity: U = ε · (up − uf ) = up. This
value is used in the determination of the normalised drag forces from the
simulations.

The velocity of the particles is not influenced by the drag force by setting
their mass to infinity, and no other forces are acting on the particles. Thus,
the configuration and velocity of the particles stay fixed, keeping the system
well defined during the entire simulation.

Most monodisperse simulations were performed using diameters of 17.5 or
25.5 lattice sites. For binary systems mixtures were used with diameters
ranging from 6.4 to 64.4 sites. High Reynolds numbers usually required
large diameters to prevent the simulations from becoming unstable. Occa-
sionally diameters of only 4.4 lattice sites were used at low Reynolds num-
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bers for extrapolation purposes (see below and section 3.3.1). The viscosity
that was used in nearly all simulations was µ = 1/1200. This small value
ensures that high Reynolds numbers can be achieved using velocities still
within the stable region of low Mach numbers. Velocities used ranged from
1 · 10−5 to 0.02, and occasionally 0.025 was used for extrapolation at high
Reynolds numbers. With these values Reynolds numbers were varied from
0.2 to 1000 for monodisperse simulations, and for the binary mixtures the
average Reynolds number varied from 0.1 to 500. Porosities were varied
from 0.4 to 0.9 for monodisperse systems, and for binary systems a porosity
of 0.35 was included in the simulations as well. In the bidisperse simula-
tions, diameter ratios (dsmall/dlarge) between the particles ranged from 0.25
to 0.7, and several volume fractions of large and small particles were used.
Simulations were run for 200 − 400 cycles of each 1000 time steps. Forces
on the particles were measured and averaged over each cycle.

The lattice-Boltzmann method suffers from some finite size effects, like all
simulation methods that use discretisation. Larger particles have more
boundary nodes, implying that the force can be calculated more precisely.
To correct for this finite size effect all simulations were repeated using a
smaller system, keeping the same simulation parameters like number of par-
ticles, porosity and Reynolds number. In the simulations of bi- and poly-
disperse systems the configurations were kept equal as well (all sizes were
scaled down).

3.4.4 Analysis of results

The simulation program calculates the force exerted on each particle during
each cycle. This is equal to Ff→s in equation (2.1). This force is converted
to the actual drag force Fd by multiplying with 1/ε and subsequently nor-
malised with the Stokes-Einstein drag as described in equation (2.6). The
normalised drag force is averaged over all particles in monodisperse simu-
lations and over all particles of the same type in polydisperse simulations.
After the simulation has reached steady state (usually after 50−150 cycles),
the forces are averaged over a longer period, e.g. 100− 200 cycles.

Figure 3.8 shows a typical example of the normalised drag force that was
measured in simulations with the same porosity and Reynolds number, but
with different configurations and flow directions. This figure illustrates that
the drag force depends on the configuration of the particles, which is the
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Figure 3.8: Normalised drag forces measured in simulations with identical
porosity and Reynolds number, but different configurations and flow direc-
tions. The thick solid line is the average over all simulations.

reason why the data reported in this thesis are averaged over several simu-
lations. The bold line is the average value over all configurations. It takes
some time for the system to come to a steady state (in figure 3.8 on average
40 cycles), but even when this plateau is reached fluctuations in the drag
force keep occurring, and for that reason the data were also averaged over
a longer period (e.g. from t = 100 to t = 200 cycles). The fluctuations are
stronger in some simulations than in others, which is presumably related to
the direction of the velocity, as the effective volume of a particle is more
influenced by movement in some directions than in other directions.

The number of configurations was up to 30 for monodisperse simulations.
For bidisperse simulations usually only five configurations were used, as the
parameter space is much larger and it would require too much CPU-time
to use more configurations. Tests indicated that the difference between the
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average drag force obtained from five configurations and a drag force from
ten configurations was usually less than 2.5 %, although a difference of 4 %
was occasionally observed in a simulation with very high Reynolds numbers
(〈Re〉 = 1000). To prevent any influence of a small variation in porosity
between the various configurations the drag forces were all extrapolated to
the same porosity, by a second order Taylor approximation using some initial
estimate for the functional form of F .

The drag force in the simulations is influenced by finite size effects, which
are second order in grid resolution. Therefore, all simulations were repeated
on a smaller scale, and the results of both simulations were plotted against
1/r2

h with rh defined in equation (2.29). Linear extrapolation to 1/r2
h = 0

gave the result for infinitely large particles, which is the value that is given
in the results section.

3.5 Discrete particle model (DPM)

The discrete particle model was originally developed by Hoomans et al.
(1999). Below an overview of the main equations is given. A more extensive
description can be found in Hoomans (1999) and van der Hoef et al. (2005).

In the discrete particle model the gas phase is described by the volume-
averaged Navier-Stokes equations. The continuity equation for the gas phase
is given by:

∂ (ερ)
∂t

+∇ · ερu = 0 , (3.19)

where ε is the porosity of the system, ρg the density of the gas and u the
gas velocity. The momentum equation for the gas phase is given by:

∂ (ερu)
∂t

+∇ · ερuu = −ε∇P − Sp −∇ · ετ + ερg . (3.20)

In this equation P is the pressure, τ the viscous stress tensor and g the
acceleration due to gravity. Sp is a source term that is related to the two-
way coupling which is important at high solids volume fractions typically
used in this study.

The particle dynamics are based on Newton’s equations of motion, which
for particle p reads:

mp
dvp
dt

= mpg +
Vpβ

(1− ε)
(u− vp)− Vp∇P , (3.21)
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where mp, Vp and vp are the mass, volume and velocity of the particle,
respectively. The second term on the right hand side is the drag force,
where β is the inter-phase momentum exchange coefficient, which is directly
related to the dimensionless drag force (see next section).

Particle collisions can be handled in two ways. The first is a hard sphere
approach, where collisions are assumed to be binary and instantaneous. Col-
lision rules are derived from Newton’s laws. Three parameters have influence
on the collisional interaction: the restitution coefficient e (0 < e < 1), the
friction coefficient µ (µ > 0) and the tangential restitution coefficient β0

(β0 > 0). These parameters determine the amount of energy that is lost
during a collision and the velocities of the particles after the collision.

The other approach to account for collisions is the soft sphere model. This
is a linear spring/dash-pot model where the force on a colliding particle is
determined by the amount of (fictitious) overlap it has with other particles.
Multiple collisions are possible in this model. Contrary to the hard-sphere
model that is event-driven (the system evolves from collision to collision),
the soft-sphere model uses a fixed time step. Therefore, the soft-sphere
model is preferred in cases where many collisions occur, e.g. in very dense
systems.

3.5.1 Drag force in DPM

The size of the computational cells in the discrete particle model typically
exceeds the diameter of the particles. No direct interaction occurs on the
surface as in the lattice-Boltzmann model, and therefore a closure model
for the drag force has to be implemented. This is done via the inter-phase
momentum exchange coefficient β, which is defined as:

Fd =
Vpβ

(1− ε)
(u− vp) . (3.22)

The local porosity and gas velocity necessary for the evaluation of this equa-
tion are obtained through a volume-weighted averaging procedure (Hoomans,
1999). The force of a particle on the gas phase is distributed to the sur-
rounding cells by the same technique. The momentum exchange coefficient
is related to the normalised drag force used in this work as follows:

β =
18µ
d2

ε (1− ε)F . (3.23)
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Most models use the empirical Ergun-equation (equation (2.32)) for porosi-
ties up to 0.8, combined with the Wen and Yu drag correlation (equation
(2.35)) at higher porosities (see e.g. Enwald et al., 1996). Bokkers et al.
(2004) compared results obtained with this equation to simulations using
the drag relation that was derived from lattice-Boltzmann simulations by
Hill et al. (2001b). The latter equation was shown to give results that agreed
better with experiments than simulations where the empirical models were
used. The drag relation that was derived in this work was also implemented
in the discrete particle model, for which the results are presented in chapter
6.
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Simulation results:
monodisperse systems

Abstract

This chapter presents the results of the lattice-Boltzmann simulations for
the drag force on spherical particles in monodisperse systems of varying
porosities (ε = 0.4− 0.9). The Reynolds numbers in these simulations were
varied from Re < 1 to Re ≈ 103. The results are compared to other data
and several correlations (both theoretical and empirical) from literature. A
new correlation that fits the results better than the literature relations is in-
troduced, which consists of a single equation for all porosities and Reynolds
numbers. This is considered to be a great advantage over other relations,
which are often valid for a limited range of porosities and/or Reynolds num-
bers only or consist of several equations for the various regimes.
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4.1 Introduction

Due to the enormous increase in computer capacities in recent years, it is
anticipated that CFD-models will become important tools in the design and
optimisation of chemical reactors. The success of these models in simula-
tions of large scale processes depends heavily on the availability of closure
relations to accurately describe the micro-scale processes. One of these pro-
cesses is the interaction between solid particles and the surrounding fluid
(liquid or gas), e.g. in fluidised bed reactors. As reported in chapter 2
there is no comprehensive theoretical approach, especially when high pack-
ing fractions and/or high Reynolds numbers are involved. It is also difficult
to measure the fluid-solid interaction experimentally. The drag force on sin-
gle particles can be measured in very small and dilute systems only, whereas
in larger systems information has to be obtained via indirect methods such
as pressure drop measurements over an entire reactor or the terminal veloci-
ty of sedimenting particles. As mentioned in chapter 2, for this reason most
correlations that are currently available were obtained from experimental
data taken in a limited range of porosities (e.g. fixed and slightly expanded
beds) and/or Reynolds numbers, which means that, in principle, their valid-
ity is also limited. In this work, lattice-Boltzmann simulations were used to
calculate the drag force on spherical particles over a large range of porosi-
ties and Reynolds numbers. The fluid flow in this model is solved on a scale
smaller than the particle diameter, which enables accurate calculation of the
interaction force between fluid and particle. The method was described in
section 3.2, and the simulation setup in section 3.4. The simulation method
enables the study of well defined systems, in contrast to experiments where
conditions in the reactor may vary in time and space.

Figure 4.1 shows an example of a porous system as studied in the com-
puter experiments. This configuration consists of 54 spheres, each with a
diameter of 17.5 lattice sites, with a system porosity equal to 0.5. The par-
ticle configuration was generated using the Monte Carlo method described
in section 3.4.1. The simulation volume has periodic boundary conditions,
which means that during a simulation all particles are surrounded by other
particles and the flow is not influenced by wall effects. Figure 4.2 is a cross-
section of the flow through this system after steady state has been reached.
In this figure, the white spots are the particles while the arrows indicate the
velocities on the lattice nodes. The velocities are adjusted in such a way that
the particles are at rest while the fluid is flowing through the system. The
arrows point in the direction of the flow, while their length and thickness
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Figure 4.1: Example of a monodisperse system as studied in the LBM-
simulations. N = 54, d = 17.5 lattice sites, ε = 0.5.

indicate the magnitude of the velocity. At the particle boundaries no-slip
conditions apply, shown by the low fluid velocities near these boundaries.
The fluid velocity reaches a maximum in large pores where it is not hindered
by particles, as could be expected.

4.2 Low Reynolds numbers

Table A.1 in appendix A shows the averaged results from the lattice-Boltz-
mann simulations for the normalised drag force in a monodisperse random
array of spheres at low Reynolds numbers. These data were obtained from
the simulation results according to the method described in section 3.4.4.
These results are also shown in figure 4.3, where they are compared to several
drag relations and three other sets of simulation data. The data from Ladd
(1990) and Mo and Sangani (1994) were obtained via a multipole expansion
of the force density on the surface of the spheres, where the fluid motion is
described by the Stokes equations. Hill et al. (2001a) used lattice-Boltzmann
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Figure 4.2: Cross-section of flow through the monodisperse system in figure
4.1 during lattice-Boltzmann simulation.
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Figure 4.3: Normalised drag force in monodisperse systems as a function
of packing fraction. Data from our simulations are compared to simulation
data from literature. The solid line is the best fit to the data (equation
(4.1)), other lines are drag relations from literature.

simulations in their calculation of the drag force. The simulation results are
in very good agreement with the literature data, although the data from
Hill et al. (2001a) suffer from somewhat more scattering, in particular for
higher packing fractions, which could be caused by insufficient sampling. In
the simulations, it was found that for densely packed systems, the individual
results for each configuration can be very different, due to the limited number
of particles. Rather than increasing the number of particles, it was decided
to obtain data for more independent configurations and flow directions (up to
30 in total), and in the final average all data were omitted that were outside
2.5 times the standard deviation, as calculated from the initial average.

The solid line in figure 4.3 is the best fit to all simulation data, which takes
the following simple form:

F (ε) = 10
1− ε

ε2
+ ε2

(
1 + 1.5

√
1− ε

)
, (4.1)
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i.e. the Carman equation with a term added in order to have the correct
limiting behaviour for ε → 1. The largest deviation of this fit with ei-
ther the present lattice-Boltzmann data and multipole expansion data from
Ladd (1990) and Mo and Sangani (1994) is 3 percent. Since all these data
sets are obtained by two completely independent simulation methods, it is
claimed that equation (4.1) represents the true drag force for random ar-
rays of monodisperse spheres to within 3 percent, and probably less. The
Kozeny-Carman equation, the Ergun equation and the relation by Koch and
Sangani (1999) are also shown in figure 4.3.

4.3 Intermediate and high Reynolds numbers

The simulation data for the normalised drag force in monodisperse systems
at higher Reynolds numbers are presented in table A.2 in appendix A. Fig-
ure 4.4 shows the data as a function of the Reynolds number. Although
many drag relations from literature, e.g. the Ergun equation, assume a lin-
ear dependency on the Reynolds number, these data suggest that this is not
true over the entire range. This becomes more obvious when the variable α
is plotted, defined as:

α =
F (ε,Re)− F (ε, 0)

Re
, (4.2)

as is shown in figure 4.5.

The lines in figures 4.4 and 4.5 represent the best fit to the simulation data,
which is given by the equation:

α =
0.413
24ε2

(
1
ε + 3ε (1− ε) + 8.4Re−0.343

)(
1 + 103(1−ε)Re−

1
2
(1+4(1−ε))

) . (4.3)

The simulation results show the largest deviation from this equation in the
intermediate Reynolds range. Part of this deviation may be caused by the
magnitude of the Reynolds dependent part of the drag force in the region,
which is quite low, and therefore minor fluctuations in the overall drag
force result, within the error of the simulation method, form an important
deviation when α is calculated from these results. The standard deviation
in α at Re = 21.0 is often 5−6 %, whereas for higher Reynolds numbers this
is only 1− 2 %. It should be noted that in the same range of intermediate
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Figure 4.4: Normalised drag force in monodisperse systems as a function of
Reynolds number for various packing fractions.
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Figure 4.5: Reynolds dependent part of drag force in monodisperse systems
as a function of packing fraction (α as defined in equation (4.2)).
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Reynolds number several literature drag relations show a gap as well, e.g.
Hill et al. (2001b) do not give a relation for 2 < Re < 40, and Fand et al.
(1987) found a transition regime in the range 80 < Re < 120.

From equation (4.3) we arrive at the final expression for the normalised drag
force at arbitrary Reynolds number (up to Re = 1000):

F (ε,Re) = 10
1− ε

ε2
+ ε2

(
1 + 1.5

√
1− ε

)
+
0.413Re

24ε2

(
1
ε + 3ε (1− ε) + 8.4Re−0.343

)(
1 + 103(1−ε)Re−

1
2
(1+4(1−ε))

) . (4.4)

The lines in figure 4.4 show the predictions from equation (4.4) for the
porosities that were used in the simulations. The average deviation of the
simulation results from the prediction is 3.05 %, where the maximum devia-
tions (6.8− 7.5 %) are found for high Reynolds numbers and dense systems
(ε = 0.4− 0.5).
An important advantage of equation 4.4 over other drag relations (Ergun,
Hill et al.) is its limiting behaviour for ε → 1. For high Reynolds numbers,
α approaches the value 0.413/24, which is equal to the limit of the Turton
and Levenspiel-equation (equation (2.23)).

4.4 Discussion

Figures 4.6 to 4.9 compare our simulation data to various literature drag
relations. In these figures, all lines are calculated for the same porostities
that were used during the simulations, where the highest line always repre-
sents ε = 0.4, and the lowest ε = 0.9. One of the most striking results is
that the Wen and Yu-relation is not a good approach in the high porosity
regime, whereas this is the region where it is most often applied in CFD-
simulations of gas-fluidised beds. At lower porosities the agreement with
the simulation data is fair, where it should be noticed that the slope (α) at
low Reynolds numbers is far too high. The Ergun relation performs reason-
ably well in dense beds, although at high Reynolds numbers the deviations
from the current simulation results are considerable. In more dilute beds
the predictions from the Ergun equation are a factor of 2.5 off, which is
not surprising considering the fact that Ergun (1952) derived his equation
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Figure 4.6: Simulation results for normalised drag force in monodisperse
systems compared to Ergun relation (equation (2.32)).

Figure 4.7: Simulation results for normalised drag force in monodisperse
systems compared to Wen & Yu relation (equation (2.35)).
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Figure 4.8: Simulation results for normalised drag force in monodisperse
systems compared to relation of Hill et al. (2001b) (equation (2.42)).

Figure 4.9: Simulation results for normalised drag force in monodisperse
systems compared to relation of Fand et al. (1987) (equation (2.34)).
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Figure 4.10: Reynolds dependent part of drag force (α as defined in equation
(4.2)) compared to Ergun (equation (4.2)), Wen and Yu (equation (2.35))
and Hill et al. (2001b) (equation equation (2.42)).

from experiments in the range of ε = 0.43 − 0.54 only. For the drag forces
calculated with the equations of Fand et al. (1987) more or less the same
remarks apply as for the Ergun equation, which is not remarkable since the
two are very similar. Fand et al. (1987) obtained their data in dense packed
beds with a porosity of ε = 0.34 − 0.36. The relation of Hill et al. (2001b)
gives a far better agreement with the lattice-Boltzmann results but deviates
slightly at higher Reynolds numbers, which can be explained by the fact
that they only used simulations with Reynolds numbers that did not exceed
Re = 150.

Figure 4.10 compares the results for α from the simulations to several lit-
erature relations. Ergun (1952) predicts a fixed value for αε2 = 1.75/18,
independent of the Reynolds number. The relation of Hill et al. (2001b)
does not depend on the Reynolds number either, but its predictions are
in reasonable agreement with the simulation data. For the Wen and Yu
equation two lines are shown that represent the highest (1049) and low-
est (21.0) Reynolds number of the simulations, where the predictions for
21 < Re < 1049 lie in between these lines.

Another comparison with the Wen and Yu-type of relations can be made via
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Figure 4.11: Exponent p in Wen & Yu type drag relations calculated from
our simulation results for various porosities, compared to Wen & Yu equation
and relation of Di Felice (1994).

the value for the exponent p, which can be calculated from our simulation
results via p = −ε log (F (ε,Re)/F (1, Re)), where the drag on a single parti-
cle is calculated with the equation of Turton and Levenspiel (1986). Figure
4.11 shows that the power p is by no means independent from ε and Re as
assumed in the Wen and Yu-equation. Other equations of the same type
take into account a dependency on the Reynolds number, e.g. the equation
of Di Felice (1994) (equation (2.41)), which is a good approximation of the
simulation data when ε < 0.5. However, the simulation results clearly sug-
gest that at higher porosities there is a dependency of p on the porosity as
well, raising serious doubts about the validity of this approach.

The simulation results that were presented here are the results for the aver-
age drag force on a single particle in a monodisperse system. The drag force
on each individual particle may vary significantly: a factor 2 to 3 between
the highest and lowest individual drag forces in a single simulation is not
uncommon, and factors up to 6 have been noticed in cases of high Reynolds
numbers. The variations are larger in systems with higher porosities, prob-
ably because the variations in pore size are larger in these situations. In
systems with a low porosity there is not enough space available to form
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large pores, ensuring a truly homogeneous system and thus homogeneous
flow field, whereas in more dilute systems the freedom in positioning the
particles is much larger, resulting in a larger range of interparticle distances
and less homogeneous flow field (see also figure 4.2). A related effect is the
blocking of some particles from the fluid flow by neighbouring particles: if a
particle is in front of another particle with respect to the flow direction, the
flow will try to find a way around the ensemble. In dense systems this is not
always possible and the flow is forced to move along all particles, whereas in
more dilute systems the fluid surrounding the second particle will be more at
rest and thus this particle experiences a lower drag force. Experiments and
simulations by Liang et al. (1996) confirm the influence of the orientation
and distance of neighbouring particles on the drag force. Lattice-Boltzmann
simulations on the drag force in clusters of particles (see chapter 7) illus-
trate the effect of shielding by other particles as well: a particle in the
core of a cluster experiences a much lower drag force than a particle in the
outer region because the flow in the pores of the cluster is much smaller
than the flow around it. Further evidence that the differences are related
to inhomogeneities in the spatial configuration rather than caused by other
fluctuations is provided by the fact that the drag forces on individual par-
ticles in a simulation do not fluctuate much in time. However, it is not in
the scope of this research to investigate the variation in local porosity. It is
also not clear whether the use of a local porosity in the drag relation would
result in a more accurate drag force on the individual spheres. In principle,
this could be tested by lattice-Boltzmann simulations. Furthermore, when
applying the drag relation in larger scale CFD-simulations the effect will
usually be ignored, as the porosity is calculated at a scale of computational
cells several particle diameters large, and it would be too expensive to cal-
culate a porosity for each particle, which involves an evaluation of the local
geometry of the neighbouring particles.

The systems with low porosities (notably ε = 0.4 and ε = 0.45) show some
ordering in their structure: the particle configuration resembles a BCC-
lattice. It is known that especially for higher Reynolds numbers this influ-
ences the drag force on the particles, in particular when the flow is in one
of the main lattice directions (Hill et al., 2001b). However, since the results
are averaged over different random flow directions and over several config-
urations (in each of which the particles are displaced slightly with respect
to the BCC-configuration) it is expected that the results are not strongly
influenced by the order. Furthermore, previous investigations have shown
that in dense systems at low Reynolds numbers the differences in pressure

62



Simulation results: monodisperse systems

drop over ordered and random systems are minor when high packing frac-
tions are involved. Zick and Homsy (1982) showed that for packing fractions
greater than 0.5 the difference between the Kozeny-Carman drag for ran-
dom systems and the drag in ordered arrays is usually less than 15 %, and
slightly more when close to the maximum packing fraction (0.68 for BCC-
lattices). Since such high packing fractions are not used in these simulations
it is believed that the results presented here are a valid approximation of
the drag force in random systems. Sangani and Acrivos (1982) mentioned
that an estimation of the drag force in random dense systems, based on
the drag in ordered dense systems, was in close agreement with the Blake-
Kozeny equation. Furthermore, it should be noticed that some ordering
seems to be inevitable in practical applications of low porosity systems as
well. In systems with higher porosities there was no evidence of order in the
configuration.

In this thesis only static beds of particles were investigated. In discrete
particle simulations of fluidised beds however, the particle are moving about.
The drag force is usually calculated with this individual particle velocity, an
assumption that seems to be justified although its validity demands further
research. Some preliminary lattice-Boltzmann simulations showed that in
cases with a low granular temperature, where the mean square velocity was
of the order of the flow velocity, the differences between the drag force in a
static bed and the drag force based on the individual particle velocity are
negligible, whereas in case of larger fluctuating velocities the results were
not yet conclusive. High granular temperatures occur mainly in regions
with high (fluid) velocity gradients, e.g. around a jet, or in regions with
steep porosity gradients like the wake of a bubble.

4.5 Conclusions

The new relation for the drag force in porous systems of monodisperse spheri-
cal particles (equation (4.4)) was derived from lattice-Boltzmann simulations
over a wide range of porosities (ε = 0.4−0.9) and Reynolds numbers (Re < 1
to Re ≈ 103). It fits the LBM data better than the relations from litera-
ture, which often apply for a limited range of the porosity and/or Reynolds
number only, even though they are often used outside of this range. Further-
more, a major advantage of the new relation is that it consists of a single
simple equation for all porosities and Reynolds numbers, which means that
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there are no undefined ranges for the drag force (like in the relations of Hill
et al. (2001b) or Fand et al. (1987)) and no discontinuities occur in the drag
force (like in the combination of the Ergun and Wen and Yu-equations).

The new relation may be implemented in larger scale CFD-models as dis-
cussed in section 1.5. The drag force in these models is often represented by
an interphase momentum transfer coefficient β (see equation (2.8)), which
for the drag relation in equation (4.4) corresponds to:

β = 180
µ

d2

(1− ε)2

ε
+ 18

µ

d2
ε3 (1− ε)

(
1 + 1.5

√
1− ε

)
+0.31

(
1
ε + 3ε (1− ε) + 8.4Re−0.343

)(
1 + 103(1−ε)Re−

1
2
(1+4(1−ε))

) . (4.5)

The results of discrete particle simulations where this expression for β is
used will be presented in chapter 6.

Finally, it should be noted that the lattice-Boltzmann simulations were all
performed in homogeneous, static, monodisperse systems, where the average
drag force was measured. Equation (4.4) does not take into account the effect
of inhomogeneities like bubbles or clusters, variations in the local porosity,
particle size distribution, or individual particle velocities. The drag force
in bi- and polydisperse systems is investigated in the next chapter, and the
effect of clustering in chapter 7. The other topics require further research,
for which the lattice-Boltzmann method is also very well suited.
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Simulation results: bi- and
polydisperse systems

Abstract

This chapter presents the results of lattice-Boltzmann simulations of the
flow through mixtures of bidisperse spheres of varying porosity (0.4− 0.9),
diameter ratio (0.25−0.7), mixture composition and Reynolds number (0.1-
500). For low Reynolds numbers, the average drag force from these simu-
lations agrees on average within 5% with the equation for the drag force in
monodisperse systems. At higher Reynolds numbers the deviation is larger,
especially in the simulations with an average Reynolds number 〈Re〉 = 100.
This is also the region where the largest deviation was found in the simula-
tions of monodisperse systems.

The drag force on individual particles was compared to equation (2.56) that
was based on theoretical considerations, and matched this equation within
15 %. A systematic deviation in the results was overcome by adding an
extra term to this equation, leaving an average deviation of less than 5 % in
Fi/ 〈F 〉. Literature values of Koo and Sangani (2002) confirm the validity
of this equation. Simulation results are compared to the theory of Patward-
han and Tien (1985), which generates errors in the same order as the new
equation. However, the new method is believed to be easier in the use.
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5.1 Introduction

The previous chapter presented a new relation for the drag force in systems
consisting of monodisperse spherical particles, that was derived from lattice-
Boltzmann simulations. In reality however, truly monodisperse systems are
rarely encountered. Catalyst particles for example usually cover a certain
range of diameters rather than a single size, and even then the particles may
break due to attrition in the fluidised bed reactor. In other processes par-
ticles may change their size due to physical processes or chemical reactions,
causing a wide range of sizes to be present in the reactor.

The influence of this polydispersity on the drag force is difficult to measure
experimentally, in particular when the drag force on individual particles
is considered. Literature data are usually limited to measurements of the
overall pressure drop over a polydisperse system or indirect data such as
measurements of the settling velocities in mixtures (see also section 2.6).
Methods that are capable of measuring the drag force on individual parti-
cles have been developed but are limited to dilute systems consisting of very
few particles (see e.g. Liang et al., 1996), that cannot form a good represen-
tation of a polydisperse system. Therefore, computer simulations such as
the lattice-Boltzmann method are a very important tool in the study of bi-
and polydisperse systems, since this is one of the only methods which can
provide information on the drag force for individual particles in arbitrary
systems, where the only limitation is the available computer capacity.

The parameter space in polydisperse systems is infinitely large, since the
number of particle species, diameter ratios, distribution widths around an
average diameter and mixture composition are all variables, apart from the
porosity and Reynolds number. Therefore, this study is limited to bidisperse
systems with a diameter ratio between 0.25 and 0.7. Lower diameter ratios
are not often encountered in industrial applications. In section 5.5 the results
of simulations of one polydisperse system, consisting of four particle species,
will be presented.

5.2 Bidisperse systems

In the bidisperse simulations the number of particles ranged from 64 to 1000,
depending on the diameter ratio and the mixture composition. In the case
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Figure 5.1: Example of a bidisperse system as studied in the LBM-
simulations. N1 = 192, N2 = 24, d1/d2 = 0.5 lattice sites, ε = 0.5, φ1 = φ2.

of extreme diameter ratios (e.g. 1:4), the number of large particles becomes
very low if the total number of particles is not sufficiently large. A minimum
of 12 large particles was used for each system. Another problem was that the
diameter of the small particles in some cases had to be very small (in some
cases as low as 6.4 lattice sites) in order to keep the total system volume and
thus the calculation time within reasonable limits. Therefore it is essential
to use the extrapolation to correct for the finite size effect, as described in
section 3.4.4.

All particle configurations were obtained through a Monte Carlo procedure
as described in section 3.4.1. Figure 5.1 shows a typical example of the
systems that were studied. The system shown here consists of 216 particles,
of which 192 are small and 24 larger with a diameter ratio of 1:2. The volume
fractions of both particle types are thus equal, and the overall porosity is
ε = 0.5.

Figure 5.2 is a cross-section of the flow through the same system. Like in
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Figure 5.2: Cross-section of flow through the bidisperse system in figure 5.1
during lattice-Boltzmann simulation.
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figure 4.2 the arrows point in the direction of the flow, while their length and
thickness indicate the magnitude of the flow. Similar to the flow through a
monodisperse system (see figure 4.2), no-slip conditions apply at the particle
boundaries and larger fluid velocities prevail in regions with a high local
porosity (large pores).

5.3 Low Reynolds numbers

In section 4.2 we found a new relation for the drag force in monodisperse
systems at low Reynolds numbers, as a function of the porosity. Section
2.6 showed that this relation might also be valid to determine the overall
pressure drop over a bi- or polydisperse system when the average particle
diameter 〈d〉 (see equation (2.16)) is used instead of the diameter d, at least
in the porosity range where the Kozeny-Carman equation is valid (ε < 0.6).
In section 2.6.3 a new relation for the drag force on individual particles
in polydisperse systems was derived in the form of a correction factor on
the drag force in monodisperse systems (equation (2.56)), which results in
the correct form of the Kozeny-Carman equation when the pressure drop
over the entire system is calculated. The Kozeny-Carman relation is valid
only at low Reynolds numbers and at low porosities; equation (2.56) is not
necessarily valid under other circumstances. Therefore, we will check the
validity of this equation first for low Reynolds numbers.

The results from the lattice-Boltzmann simulations for the drag force on
individual particles (averaged over all particles of the same type) and the
average drag force at low Reynolds numbers, calculated according to the
method described in section 3.4.4, are given in table A.3 in appendix A.
In figure 5.3 the results for the average drag force 〈F 〉 are plotted together
with the results for the drag force F in monodisperse systems (see section
4.2 and table A.1) and compared to equation (4.1). The agreement is excel-
lent, which proves that the average drag force and thus the overall pressure
drop over a bidisperse system can indeed be calculated with equation (4.1),
replacing d with 〈d〉, for all porosities in the low Reynolds number regime.
The scatter in the data from binary systems is larger than the scatter in the
monodisperse data, which is probably due to the lower number of configu-
rations over which the data were averaged due to the limited computational
resources (in most cases only five configurations were used, where this was
up to thirty for the monodisperse simulations). Apart from this, the number
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Figure 5.3: Average normalised drag force in bidisperse systems as a function
of packing fraction, compared to monodisperse simulation data and equation
(4.1).
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Figure 5.4: Normalised drag force on individual particles in bidisperse sys-
tems at low Reynolds numbers from LBM-simulations, compared to equation
(2.56).

of large particles in each configuration was often (much) smaller than the
number of particles in a monodisperse simulation, although the total num-
ber of particles was larger in all cases. The largest deviations were found
for the most extreme diameter ratio (d1/d2 = 0.25), where the maximum
deviation from equation (4.1) reached a value of almost 21%. In cases with
less extreme diameter ratios (i.e. d1/d2 ≥ 0.5) the maximum deviation from
equation (4.1) of the simulation results was only 5.4%.

Equation (2.56) presented a relation for the ratio of the drag force acting on
an individual particle in a mixture to the drag force on the same particle in a
monodisperse system with equal porosity and Reynolds number, Fi/Fmono.
From figure 5.3 it can be seen that expression (4.1) for the drag force in a
monodisperse system is close to the average drag force in the simulation 〈F 〉.
Normalisation by this latter value has the advantage that the comparison
to equation (2.56) is not influenced by deviations of the average drag force
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Figure 5.5: Normalised drag force on individual particles in bidisperse sys-
tems at low Reynolds numbers from LBM-simulations, compared to equation
(5.1).

from equation (4.4). Apart from this, the correction factor is not limited to
the drag model of equation (4.4) only.

The drag forces on individual particles in a binary mixture, normalised by
the average drag in a simulation, are compared to equation (2.56) in figure
5.4. The results match equation (2.56) very well when yi < 1.4 (remember
that yi is defined as di/ 〈d〉). When yi is outside of this range the deviation
is larger but systematic. To correct for this an extra term was added to
equation (2.56), giving:

Fi =
(
εyi + (1− ε) y2

i + 0.064εy
3
i

)
Fmono , (5.1)

for which the average deviation in all simulations becomes 4.4 %. The
maximum deviation of 23 % occurs only in a simulation with a very high
porosity, ε = 0.9. If simulations with this high porosity are ignored, the
average deviation is only 4.2 %. These results are shown in figure 5.5.
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5.4 High Reynolds numbers

The drag force obtained from lattice-Boltzmann simulations in bidisperse
media at intermediate and high Reynolds numbers is presented in table
A.4 in appendix A. Simulations were done for three values for the average
Reynolds number (i.e. the Reynolds number based on the average diameter,
〈Re〉 = ρU 〈d〉 /µ), namely 〈Re〉 = 10, 100 and 500. The average drag forces
are plotted as a function of the average Reynolds number in figure 5.6, where
they are compared to the drag force in monodisperse media and equation
(4.4). The deviation of the results from this equation is on average 4.8 %.
Figure 5.6b provides a closer look into the intermediate Reynolds regime.
The largest deviations from equation (4.4), which can be up to 24 % in case
of extreme diameter ratios (d1/d2 = 0.25), are found in this range. In most
simulations however the errors are less than 5 %.

In figure 5.7 the single particle drag forces from all high Reynolds number
simulations are presented. The ratio of the individual drag forces to the
average drag force in the simulation is shown as a function of the correction
factor

(
εyi + (1− ε) y2

i + 0.064εy
3
i

)
. We find that also for these Reynolds

numbers the data points collapse onto the straight line with slope equal to
one, which leads to the conclusion that equation (5.1) is equally valid at
intermediate and high Reynolds numbers as in the low Reynolds number
regime. This is to some extent remarkable, since equation (5.1) was derived
within the framework of the Darcy- and Kozeny-Carman equations, which
are only valid for low Reynolds numbers. It is stressed that the average drag
force 〈F 〉 should be calculated using the average Reynolds number 〈Re〉 and
not the Reynolds number of the individual particle Re.

5.5 Polydisperse system

The previous sections revealed that equation (2.56), that was derived from
theoretical considerations, forms a good approximation of the drag force
on individual particles in bidisperse systems. The best fit to the simula-
tion results is given by the same equation with an extra term as shown in
equation (5.1), where the extra term in all cases is less than 15 % of the
total correction factor to the monodisperse drag force. However, the form
of equation (2.56) as well as its derivation suggest that it is valid for poly-
disperse systems as well. To test this assumption a limited study of the
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Figure 5.6: a. Average normalised drag force in bidisperse systems as a
function of Reynolds number, compared to monodisperse simulation data
and equation (4.4). b. Close up of the intermediate Reynolds number area.
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Figure 5.7: Normalised individual drag force in bidisperse systems at high
and intermediate Reynolds numbers compared to equation (5.1).
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Figure 5.8: Normalised drag force on individual particles in a polydisperse
system, compared to equation (2.56).

drag force in polydisperse systems was performed. As the parameter space
in polydisperse systems is infinitely large, the simulations were limited to a
single mixture, which consisted of four particle species with diameter ratios
1 : 2 : 3 : 4, present in equal volumes at an overall porosity of ε = 0.5.
The simulation setup and analysis of the results were similar to those in
simulations of bidisperse systems and are described in section 3.4.

The results for the individual and average drag forces are presented in table
A.5. The average drag forces agree reasonably well with the expected values
from equation (4.4), with a maximum deviation of 6.2 %. The individual
drag forces, normalised by the average drag force, are compared to equation
(5.1) in figure 5.8. Again, a good agreement is found, with an average
deviation of 4.0 % and it is therefore expected that that the correction
factor given by equation (5.1) is indeed valid in polydisperse systems as
well, although more elaborate simulations are required before any definite
conclusions can be drawn.
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Figure 5.9: Relative deviation between the simulation values for F1 and F2

and the predictions with the Patwardhan and Tien model in combination
with equation (4.4).

5.6 Discussion

In figures 5.3 and 5.5 the simulation results of Koo and Sangani (2002),
obtained from multipole expansion simulations for two porosities (ε = 0.65
and 0.9) and two size ratios (d1/d2 = 0.5 and 0.7), are also shown. This
is to the author’s knowledge the only data for the drag force on individual
particles in binary mixtures that were measured directly in simulations. The
average drag force is somewhat too low in the simulations with ε = 0.65
compared to equation (4.1). The ratio of the individual particle drag forces
to the average drag force matches the lattice-Boltzmann data and equation
(5.1) very well.

The simulation results are also compared to the theory of Patwardhan and
Tien (1985) for the drag force on particles in a mixture, that was described
in section 2.6. The individual particle porosity is calculated according to
equation (2.51) and subsequently used in equation (4.4). Figure 5.9 shows

77



Chapter 5

Figure 5.10: Relative deviation between the simulation values for F1 and F2

and the predictions with equation (5.1) and the adjusted Patwardhan and
Tien models in combination with equation (4.4). The triangles represent
predictions where the average diameter in the calculation of δ is presumed
to be equal to 〈d〉, the stars show the deviations when the cubic equation
for δ is solved exactly.
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the relative deviation of the simulation results at low Reynolds numbers from
predictions made with this theory. The original model as it was proposed by
Patwardhan and Tien (1985), where the average diameter in the calculation
of δ is defined as davg =

∑
χidi, results in errors of more than 100 %,

especially in situations with extreme diameter ratios or low porosities. This
is significantly improved when using davg = 〈d〉, and even more so with the
exact value for δ as shown in figure 5.10. This figure also shows values for the
deviation of the simulation results from predictions that are calculated using
the new drag model (equation (4.1)) with the correction factor (equation
(5.1)). For simulations at high Reynolds numbers the Patwardhan and Tien
model performs well if the average Reynolds number 〈Re〉 is used in equation
(4.4) and not the particle Reynolds number Rei, which is shown in figure
5.11 for the simulations with 〈Re〉 = 500. The exact solution for δ was used
to calculate the values in this figure. The performance of the Patwardhan
and Tien model in this case is comparable to that of equation (5.1).

In the lattice-Boltzmann simulations the same value was used for the differ-
ence between d0 and the effective hydrodynamic diameter for all particles in
a simulation, whereas in principle this should have a different value for dif-
ferent diameters (see section 3.3). The value that was used was the average
value of deff − d0 of all the particles in the system, which introduces a mi-
nor error in all particle diameters in the simulation, and thus in the system
porosity. The deviation in the porosity could reach a deviation of about 1%
from the desired value, which could partly explain the large deviations of
the average drag force in binary simulations from equation (4.4). For one
of the most severe cases test simulations were performed where the parti-
cles were initialised using d0 instead of deff. The results obtained revealed
that the deviations from equation (4.4) decreased from 9.1 to 5.9 % in the
low Reynolds regime, and from 12.7 to 10.2 % for 〈Re〉 = 100. The ratios
Fi/ 〈F 〉 were not influenced by the new definition.

For the comparison of the individual particle drag forces to equations (2.56)
and (5.1) Fmono = 〈F 〉 was used with 〈F 〉 calculated from the simulation
results. This was chosen because it gives the most objective view about
the validity of the correction factor for polydispersity. However, when using
the new equation in CFD-simulations or other calculations, the average drag
force is obviously not known a priori, and has to be calculated from equation
(4.4). The error in this calculation will then add to the error introduced by
equation (5.1). The average deviation from equation (5.1) increases slightly
when the calculated value of 〈F 〉 is used, in general less than 1 %, although
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Figure 5.11: Relative deviation between the simulation values for F1 and
F2 and the predictions with equation (5.1) (diamonds) and the adjusted
Patwardhan and Tien models in combination with equation (4.4) for the
simulations at 〈Re〉 = 500. The triangles and stars represent the PT-model
using the average Reynolds number and the particle Reynolds number, re-
spectively.
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for 〈Re〉 = 500 the average deviation was doubled from 4.1 % to 8.4 %.
In the derivation of equation (2.56) it was stated that the Kozeny-Carman
relation for the overall pressure drop is retrieved when Fi/Fmono is first
or second order in yi. The extra term in equation (5.1) however, is third
order in yi. This influences the pressure drop over a polydisperse system
compared to the pressure drop for a monodisperse system with the same
porosity, Reynolds number and d = 〈Re〉 as follows:

∇Ppoly = ∇Pmono
d2

〈d〉2
(
1 + 0.064(1− φ)

∑
i

χiyi

)
. (5.2)

The pressure drop over a polydisperse system is thus predicted to be slightly
higher than the pressure drop over a monodisperse system with d = 〈d〉.
Figures 5.3 and 5.6 are not conclusive about this.

It is also possible to find a correction term to equation (2.56) that consists
only of first and second order terms and thus does not effect the overall
pressure drop compared to monodisperse systems. An equation that gives
very good results is:

Fi =
(
εyi + (1− ε) y2

i + 0.22 (1− ε)
(
y2
i − yi

))
Fmono . (5.3)

The average deviation of Fi/ 〈F 〉sim from this equation is less than 2 %.
The deviations in Fi/Fmono are slightly larger, on average 5 − 6 %. The
differences are most pronounced for low values of yi, where the simulation
values are often lower than the values predicted by equation (2.56). With
equation (5.1) this deviation becomes stronger, whereas the extra term in
equation (5.3) actually decreases the difference.

An interesting observation can be made when examining the effect of equa-
tion (2.56) in a mixture with a Gaussian-type size distribution of the diam-
eters. When the diameter distribution has a width σ around d̄, the average
diameter 〈d〉 is readily evaluated as:

〈d〉 = 3σ
2d̄+ d̄3

σ2 + d̄2
. (5.4)

Inserting this equation into equation (2.15) for the pressure drop shows that:

∇Ppoly = ∇Pmono

(
(σ/d)2 + 1
3 (σ/d)2 + 1

)2

, (5.5)
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where the correction term of equation (5.1) is neglected. Equation (5.5) thus
shows that the pressure drop decreases when the polydispersity increases.
This could be one of the causes of the discrepancy in the low Reynolds
number regime between the Ergun equation (k = 150/18) and the Kozeny-
Carman equation (k = 180/18), as Ergun (1952) performed his experiments
using crushed porous solids of a certain diameter range, instead of truly
monodisperse particles. The pressure gradient is reduced by a factor 0.833
(150/180) when σ/δ = 0.22, which is probably more than in the experimental
systems of Ergun. However, there may be other factors in the experimental
system which could cause a deviation with the drag force measured in the
simulations. Typically one would think of non-homogeneity of the system
and non-sphericity of the particles.

5.7 Conclusions

The lattice-Boltzmann simulations showed that equation (4.1) predicts the
average drag force over a bi- or polydisperse bed at low Reynolds numbers
with an average deviation of less than 5 %, where higher deviations were
found in cases with extreme diameter ratios or very high porosities. At
higher Reynolds numbers, equation (4.4) provides a good estimate.

The simulation data for the drag forces experienced by individual particles
are substantially different from the drag forces that these particles would
experience in a monodisperse bed of the same porosity and Reynolds num-
ber. The simulation results showed that the difference may be up to a factor
of 5 in case of a diameter ratio d1 : d2 = 1 : 4. The data were compared
to equation (2.56) that was derived on purely theoretical grounds in the
Kozeny-Carman regime, and that proved to be a reasonable approximation
at all porosities and Reynolds numbers with maximum errors up to 15 %.
To obtain the best fit through the simulation data an extra term was added
in equation (5.1). With this equation, the deviations between Fi/ 〈F 〉 in the
simulations and the predicted values are on average less than 5 %.

The model of Patwardhan and Tien (1985) performs as good as the new
relation when the average diameter in the original simulation is replaced by
the exact solution of the cubic equation for δ. However, solving a cubic equa-
tion during every calculation requires much more effort than using equation
(5.1), and therefore the latter equation may be preferred over the Patward-
han and Tien model. A good compromise is the use of 〈d〉 for the average
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diameter in the Patwardhan and Tien model, in which case the deviations
are only slightly larger than with the exact δ.
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Validation

Abstract

Pressure drop measurements were performed in a packed bed, filled with
monodisperse or bidisperse spherical particles, to validate the drag relations
that were derived in the previous chapters. For monodisperse systems at
low Reynolds numbers, the differences between the experimental pressure
drop and the theoretical predictions are on average 5.5 %. The average de-
viation from theory in bidisperse experiments is of the same order, 5.2 %.
At intermediate Reynolds numbers the deviations from theory are consid-
erably larger, on average 24 %, and seem to be systematic. It seems likely
that a systematic error was made in either the porosity or the viscosity in
the experiments. At higher Reynolds numbers the deviations from theory
decrease, for Re > 325 they are all less than 5 %. The drag force on indi-
vidual particles could not be measured, and the validity of the new relation
in dilute systems has not been tested either.

Discrete Particle Simulations of (i) a single bubble injected into an incip-
iently fluidised bed and (ii) a segregating mixture were performed with
different drag models, grid sizes and boundary conditions. All computa-
tional results were compared to experiments. The single bubble simulations
revealed that a fine grid gives more realistic results. Furthermore, usage
of the Ergun drag closure leads to an overprediction of the bubble size, al-
though no definite conclusion as to what is the best drag model could be
drawn. The segregation simulations showed that the new drag relation with
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the correction for bidispersity predicts the experimentally observed segrega-
tion rate most accurately.

Calculation of the inversion velocity of mixtures showed that the new drag
model with the correction for polydispersity gives reasonable values and also
the correct trend when the composition of the mixture is changed, this in
contrast to several models that have been proposed previously in literature.
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6.1 Introduction

In chapter 4 a new drag force relation was presented (equation (4.4)), that
was derived from lattice-Boltzmann simulations of fluid flow through random
arrays of monodisperse spheres. In chapter 5 two main observations were
made: (i) the average normalised drag force in bi- and polydisperse arrays
can be described by the same equation as for a monodisperse system at the
same porosity; (ii) the normalised drag force on individual particles differs
markedly from drag formulations in monodisperse systems, which are cur-
rently used in CFD-modelling and engineering applications. In this chapter
a partial experimental validation of the LBM-generated drag closures will be
presented. In section 6.2 the results of pressure drop experiments are pre-
sented to validate the first observation, since the pressure drop is directly
related to the average drag force in a packing. The drag force on a sin-
gle particle however is difficult to measure experimentally, and the methods
that do exist are very laborious and limited to single particles or particles
with very few surrounding particles (see e.g. Liang et al., 1996; Zhu et al.,
2003; Katoshevski et al., 2001). These systems are not representative of a
random (bidisperse) system of certain porosity and are therefore not suited
to validate equation (5.1). However, an indirect validation of the prediction
for the individual drag force can be obtained by comparing simulation data
for segregating fluidised beds with experiments. This will be presented in
section 6.3.

The validity of equations (4.1) and (4.4) in dilute systems has not yet been
verified experimentally. Major difficulty with experiments in dilute systems
is that the particles have to be fixed to their (random) position. This will
be the subject of future research.

6.2 Experimental validation: pressure drop in a
random close packed bed

6.2.1 Experimental setup

A schematic representation of the experimental setup is shown in figure 6.1,
and a photograph in figure 6.2. The setup consists of a cylindrical column
of inner diameter D = 80.0 mm and length L = 300.0 mm, placed in a
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Figure 6.1: Schematic representation of the experimental setup.
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Figure 6.2: Photo of (part of) the experimental setup.
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jacket through which water was flowing in order to keep the temperature
(which strongly effects the viscosity of the percolating liquid) constant. A
gear pump was connected to the column that circulated liquid through the
system with an accurately adjustable pump frequency. In the experiments
for low Reynolds numbers glycerin was used, whereas for the higher Reynolds
number experiments water was used. The liquid was preheated to the desired
temperature of the reactor in a thermostat bath. At four different heights
in the wall tubes were placed that were connected to a pressure differential
sensor to measure the pressure difference between the lowest measuring point
and any of the other three points, which could be selected through a switch.
Two pressure differential sensors were used: one with a maximum pressure
drop of 5 bar, and a second one with a maximum pressure drop of 175 mbar.
Both sensors had an error of 0.04 % of the full scale, thus the errors in the
measurements were typically less than 1 % if minimum pressure drops of
200 mbar and 7 mbar were encountered respectively.

The column was filled with monodisperse or bidisperse random packings of
spherical glass particles, for which five different diameters were available:
1.0, 1.5, 2.0, 2.5 and 4.0 mm, with standard deviations of less than 2 % for
all diameters. The porosity of the packing was determined from the mass of
the particles. The viscosity of the glycerin was measured in a capillary and
that of the water was calculated from the temperature (test measurements
agreed very well with theory). The measured pressure drops were corrected
for the static pressure drop.

All experiments were performed two or three times, where the bed was emp-
tied and refilled for each separate measurement, which brought about minor
changes in porosity and viscosity for the different sets of data. The aver-
aged data that are presented in the results section were corrected for these
differences by use of equation (4.4). The variations in the porosity were less
than 0.5 %, which result in corrections to the drag force (by extrapolation)
of up to 4 %. The fluctuations in the viscosity were larger as glycerin is very
hygroscopic and a small amount of water influences the viscosity strongly.
However, this is not expected to form a problem as in the low Reynolds
number experiments (for which glycerin was used) the drag force is linearly
dependent on the viscosity. The normalised drag force is not influenced by
uncertainties in the viscosity in this case, and thus no extra correction is
necessary. At higher Reynolds numbers, where the normalised drag force
does depend on the viscosity (via the Reynolds number), the uncertainty in
the viscosity was less since water was used.
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Figure 6.3: Measured pressure drops in experiments with monodisperse
beds.

6.2.2 Low Reynolds numbers

Monodisperse systems

Figure 6.3 shows the measured pressure drops over monodisperse systems
as a function of the particle Reynolds number. It can be seen that the data
obeys Darcy’s law very well, that is, the pressure drop is a linear function
of the Reynolds number in the low Reynolds number range (0 < Re < 0.6),
as is predicted by this theory. The intersection with the axis is the static
pressure, for which in the remains of this section will be corrected. The
standard deviation between measurements with the same particle type is
4.1 % on average, with a maximum deviation of 8.1 %. Part of this de-
viation can be explained by the variations in porosity and viscosity: when
corrected for these effects, the standard deviation in the experiments with
the same particle type is reduced to an average value of 2.9 %, with a maxi-
mum of 6.0 %. Figure 6.4 shows the average values for the normalised drag
forces calculated from the measured pressure drops by use of equation (2.7).
Note that in the limit of low Reynolds numbers, the normalised drag force
depends only on the packing fraction, and hence not on the particle diam-
eter. The variation in the theoretical values as shown in figure 6.4 is thus
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Figure 6.4: Normalised drag forces in experiments with monodisperse beds.
The lines are theoretical values calculated from equation 4.1.

entirely due to differences in the packing fraction between the various par-
ticle species. Specifically, the packing fractions for the 1.0, 1.5, 2.0, 2.5 and
4.0 mm particles are 0.6338, 0.6371, 0.6323, 0.6426 and 0.6301 respectively.
Deviations between the experimental drag force and the theoretical values
are on average 5.5 %, where the maximum deviation is 11.1 %. This is
within the experimental error, which is about 15 % (see for this calculation
appendix B). Deviations on the negative side are found as often as devia-
tions on the positive side, which suggests that the errors encountered here
are due to random fluctuations. It can be concluded that the experiments
confirm the validity of equation (4.1) for low Reynolds number flow through
monodisperse packed beds.

Bidisperse systems

Bidisperse packings were composed from particle mixtures with various di-
ameter ratios (d1/d2 = 0.25, 0.375, 0.50, 0.625 and 0.75) and compositions,
resulting in a total of 17 mixtures with average diameters varying from
1.2 mm to 3.7 mm. Similar to the monodisperse systems, the pressure drops
were a linear function of the Reynolds number as shown in figure 6.5. This
figure shows typical results for the pressure drops averaged from three mea-
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Figure 6.5: Typical example of pressure drop in over a bidisperse packing
for mixtures composed from the same particle species (2 and 4 mm) with
different compositions.

surements, corrected for static pressure and for small differences in porosity,
mixture composition and viscosity. The predictions for the pressure drop,
calculated with equation (4.1), over a monodisperse system with the same
diameter as the average diameter in the binary system are also shown. The
match is excellent, which confirms the results from the simulation that equa-
tion (4.1) is valid in bidisperse systems when d is replaced by 〈d〉, with 〈d〉
as defined in equation (2.16).

The average standard deviation in all bidisperse experiments at low Reynolds
numbers is 3.6 %, with a maximum deviation of 9.0 %. Not surprisingly,
this high standard deviation is found in a system with the most extreme
diameter ratio, d1/d2 = 0.25, and a small fraction of the smaller particles,
χ1 = 0.25. The homogeneity of the packing is easily effected in this case.

Figure 6.6 shows the average drag forces calculated from the pressure drop
data from figure 6.5. Figure 6.7 shows the same data for mixtures composed
of particles with varying diameter ratios but equal volume fractions φ1 = φ2.
The average deviation in all experiments (including those not shown here)
from the theoretical predictions is 5.2 %, with a maximum of almost 19 %.
The highest deviations were found in experiments where a mixture of 1.5
and 4.0 mm particles were used, which suffered from static electricity (when
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Figure 6.6: Average normalised drag forces in experiments with mixtures of
2 and 4 mm particles in different comppositions. The lines are theoretical
values calculated from equation (4.1).

Figure 6.7: Average normalised drag forces in experiments with mixtures
composed of different particle species. The lines are theoretical values cal-
culated from equation (4.1).
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filling the column) between the plexiglass cilinder and the (coated) small
particles, which disturbed the homogeneity severely as the majority of the
small particles was found in the wall region. The pressure drop found in
these experiments was lower than the theoretical values, which can indeed
be expected when the packing is disturbed in the radial direction.

Note that the packing fractions in binary systems are higher than in mono-
disperse systems, which also explains why the values for the average nor-
malised drag force are much higher. The maximum packing fraction for a
random bidisperse system depends on the diameter ratio of the particles and
the fraction of the small particles. The packing fractions in the measure-
ments varied from 0.63−0.71, where this was 0.63−0.64 for the monodisperse
systems. The highest packing fractions that were used in the simulations
were 0.6 for monodisperse systems and 0.65 for bidisperse systems.

As shown in equation (5.2) the overall pressure drop in bidisperse systems
is slightly different from monodisperse systems when equation (5.1) is used
to calculate the drag force on individual particles. However, the effect is less
than 1 %, and since the random errors in the experiments are much larger,
it is impossible to test this effect with the current drag measurements.

6.2.3 Intermediate and high Reynolds numbers

Figure 6.8 shows that the measured pressure gradients at high Reynolds
numbers are no longer a linear function of this Reynolds number, in agree-
ment with equation (4.4).

Figure 6.9 shows the average experimental values for the normalised drag
force at intermediate Reynolds numbers. The simulation values in this figure
have been corrected for minor differences in porosity and viscosity, as well
as for the static pressure drop. The deviation between the experiment and
equation 4.4 is on average 24 % for these experiments. These deviations
cannot be attributed to random errors in the measurements only (which
could add up to 15 % as shown before), since there is clearly a system-
atic deviation: the measured values are always higher than the theoretical
values. There are two possible explanations for this systematic deviation:
firstly, they could be due to an error in the fit to the simulation data (equa-
tion (4.4)). The simulation data showed a clear deviation from a linear
dependence on the Reynolds number in the range 10 < Re < 100, which
proved difficult to capture in the fit. Nevertheless, the deviations in the
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Figure 6.8: Measured pressure gradients in monodisperse experiments at
high Reynolds numbers.

Figure 6.9: Normalised drag forces from pressure drop measurements with
monodisperse packings of 1 and 2 mm particles at intermediate Reynolds
numbers. The line is the prediction for the drag force from equation (4.4).
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simulations from the fit were at most 7.5 %, and never amount to the 24 %
found in the experiments. The second possible cause is a systematic error
in the experiments, which could be found in two of the variables, namely
the porosity or the viscosity. The porosity was determined based on the
particle mass in the column. However, the packing fraction in the experi-
ments in figure 6.9 is somewhat lower than that in the low Reynolds number
experiments where the same particles are used. It is thus possible that the
system had not reached the densest random packing initially and compacted
to a lower porosity due to the flow, which would result in a higher pressure
gradient. The deviation of the porosity in the monodisperse systems with
respect to the low Reynolds number experiments is around 0.0085, which
could cause a deviation in the drag force of 12 %. The other variable that
could have a systematic error in the measurements is the viscosity. For the
measurements with water the viscosity was calculated from the tempera-
ture instead of via direct measurement afterwards; this because preliminary
measurements agreed with the theoretical values within the accuracy of the
measurement. However, if the water was polluted during the measurements,
e.g. due to some left-over glycerine in the pump or tubing (although the sys-
tem was washed several times), the viscosity in the experiments might have
been higher than expected. This would also result in a higher experimental
value of the pressure drop. Figure 6.10 shows that experiments in bidisperse
systems at intermediate Reynolds numbers show the same deviations.

Figure 6.11 shows the experimental results at high Reynolds numbers, com-
pared to equation (4.4). Only monodisperse measurements were done in
this regime, with various particle diameters to obtain a larger range for the
Reynolds numbers. For intermediate Reynolds numbers the deviations from
the theoretical prediction are again considerable; for Re < 150 almost all
deviations are larger than 12 %, and only at Re > 325 they become less than
5 %. In these experiments, the packing fractions were higher than in the
intermediate Reynolds number measurements. It is therefore not likely that
the deviations from theory in the intermediate Reynolds-regime are caused
exclusively by fluctuations in the porosity. An error in the calculated vis-
cosity could still explain the difference with the simulations.

Figure 6.12 compares the experimental results to the expression suggested
by Fand et al. (1987), equation (2.34). In the intermediate Reynolds number
regime, this forms a better fit to the data than equation (4.4). However, in
the high Reynolds-regime the deviation increases, reaching values of up to
17 %. This is remarkable, since the experiments by Fand et al. (1987) are
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Figure 6.10: Normalised drag forces from pressure drop measurements with
bidisperse packings composed of 1 and 2 mm particles in various volume
fractions at intermediate Reynolds numbers. The line is the prediction for
the drag force from equation (4.4).

Figure 6.11: Normalised drag forces from pressure drop measurements with
monodisperse packings of 1 and 2 mm particles at intermediate Reynolds
numbers. The line is the prediction for the drag force from equation (4.4).
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Figure 6.12: Experimental results for high Reynolds numbers compared to
the expression by Fand et al. (1987).

very similar to the experiments presented here, and their expression showed
very little deviation from their experiments.

6.3 DPM-simulations

One of the reasons to derive the new drag relation, apart from the intrinsic
scientific interest, is that drag force closures are a prerequisite in larger
scale CFD-models of fluidised beds, like the discrete particle model (DPM)
or the continuum model. In this section we present some simulations with
the discrete particle model where the effect of the drag model is studied.
To this end we performed simulations where the new closures from chapter
4 and 5 are used and simulations using the standard drag models, both
of which are compared to experimental results. Two types of experiments
were studied: (i) the forced formation of a single bubble by injecting a jet
in a monodisperse bed that is initially fluidised at minimum fluidisation
velocity, and (ii) the segregation of a binary mixture in a freely bubbling
bed. The first experiment has the advantage that its reproducibility is very
high and that random fluctuations in initial particle positions have almost
no influence on the results. The second experiment is a very good test case
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Figure 6.13: Qualitative representation of the gas velocity profile in a com-
putational cell next to the wall in a dense bed. The solid line is the realistic
situation; the dotted and dashed lines represent the no-slip and free-slip
approximations in the discrete particle model, respectively.

to study the influence of the correction for polydispersity. Previous studies
(see e.g. Goldschmidt, 2001a; Bokkers et al., 2004) have shown that it is
very difficult to predict segregation rates accurately with CFD-simulations.

Besides the influence of the drag relation, the influence of boundary con-
ditions imposed in the simulations is studied as well. Near a solid wall,
the friction with that wall will usually be so large that the fluid acquires
the same velocity as the wall. This is called a no-slip boundary condition,
which for our situation means that the gas velocity at the bed walls will
be zero. Another possibility is that the fluid experiences no friction from a
boundary and is thus allowed to move freely along this boundary, which is
called free-slip boundary condition. This applies e.g. at a liquid-gas inter-
face, and the velocity gradient at the interface will be zero at equilibrium.
In an experimental fluidised bed the gas flow near the walls shows no-slip
behaviour. However, this does not mean that this is the obvious choice for
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the boundary conditions to be imposed in a DPM-simulation. The bound-
ary layer thickness is typically of the order of one particle diameter, while a
computational cell in the discrete particle model usually measures at least
4-10 particle diameters. Besides, wall-channelling prevails in the packed
bed which especially becomes important in systems with a relatively small
number of particles fitting in the tube in the radial direction (the packing
is disturbed by the walls). A qualitative representation of the gas velocity
profile near a solid wall is given in figure 6.13. Also shown are the free-
slip approximation and no-slip approximation. The best choice of boundary
conditions in each simulation will depend on variables like the cell size in
relation to particle diameter and the porosity.

6.3.1 Single bubble simulations

An experiment with a very high degree of reproducibility is the formation
of a single bubble induced by a gas jet in a bed that is initially fluidised at
minimum fluidisation velocity. Bokkers (2005) performed these experiments
in a bed with glass particles of 2.5 mm diameter, where a jet with a velocity
of 20 m/s was injected from t = 0 s until t = 0.15 s. The snapshots from our
simulations for an identical system will be compared to pictures taken dur-
ing these experiments. Apart from this, Bokkers (2005) used Particle Image
Velocimetry (PIV) to characterise the flow in the experiments; however, the
resolution of these measurements is unfortunately not high enough to differ-
entiate between the simulation runs with different drag relations, grid sizes
and boundary conditions. In the simulations the same settings were used
as in the experiment, where the particle properties such as the coefficient of
restitution and friction coefficient were determined experimentally as well.
A soft-sphere approach was used for the particle collisions (Hoomans, 1999;
Bokkers, 2005), and the gas flow was solved two-dimensionally as the bed
has a very small depth. A particle configuration at incipient fluidisation
conditions was generated by mixing the particles for a short time at high
fluidisation velocity, followed by a relaxation period under minimum fluidis-
ation conditions. The resulting system was subsequently used as the initial
configuration in the single-bubble simulations. Details about the experiment
and simulations are given in table 6.1.

We performed simulations of this system with three different drag models:
firstly, a combination of the Ergun (ε < 0.8) and Wen and Yu (ε > 0.8)
equations, as often utilised in literature; secondly, the relation derived from
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Table 6.1: Settings in the single bubble experiment and simulations.

Width 0.15 m

Depth 0.015 m

Height 0.45 m

Initial bed height 0.18 m

Background velocity 1.25 m/s

Jet velocity 20 m/s

Jet operation time 0− 0.15 s
Coarse grid: Fine grid:

Cells in x-direction 15 30

Cells in y-direction 1 1

Cells in z-direction 45 90

Particle properties

Diameter 2.5 mm

Density 2525 kg/m3

Coeff. of normal restitution 0.97

Coeff. of friction 0.10

Coeff. of tangential restitution 0.33
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Table 6.2: Drag models and boundary conditions in the single bubble sim-
ulations.
Run Drag model Grid Boundary

1 Equation (4.4) coarse free-slip

2 Equation (4.4) coarse no-slip

3 Equation (4.4) fine free-slip

4 Equation (4.4) fine no-slip

5 Ergun/Wen & Yu coarse free-slip

6 Ergun/Wen & Yu coarse no-slip

7 Ergun/Wen & Yu fine no-slip

8 Hill et al. coarse free-slip

9 Hill et al. coarse no-slip

10 Hill et al. fine no-slip

lattice-Boltzmann simulations by Hill et al. (2001b), and thirdly, equation
(4.4). The simulations were done with both no-slip and free-slip boundaries,
and two different grid sizes were used. The boundary conditions on the front
and back wall were free-slip in all cases, as the gas is solved in two dimensions
only.

Results: grid and boundary conditions

Figures 6.14 to 6.18 show snapshots from the experiment and simulations
with various boundary conditions and grid sizes. In the beginning of the
bubble formation (t = 0.1 s) the simulations that use a fine grid seem to
produce a bubble that is more spherical, especially near the bubble nose,
which agrees better with the experiment. There is no visible difference
between free-slip and no-slip conditions. When the bubble starts to collapse,
the distinction between the simulations with different grid sizes is even more
obvious. The figures show that in the case with small grid cells (∆x = ∆z =
0.5 cm) more patterns in the particle configuration can be distinguished
and the bubble seems to have broken up into several smaller bubbles (see
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Figure 6.14: Snapshots from single bubble experiment and simulations at
t = 0.1 s. Numbers refer to table 6.2.
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Figure 6.15: Snapshots from single bubble experiment and simulations at
t = 0.2 s. Numbers refer to table 6.2.
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Figure 6.16: Snapshots from single bubble experiment and simulations at
t = 0.3 s. Numbers refer to table 6.2.
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Figure 6.17: Snapshots from single bubble experiment and simulations at
t = 0.4 s. Numbers refer to table 6.2.
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Figure 6.18: Snapshots from single bubble experiment and simulations at
t = 0.5 s. Numbers refer to table 6.2.
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figure 6.17). Since these structures are also found in the snapshots of the
actual exeriment, it may be concluded that the increased grid refinement is
necessary for a realistic simulation. Furthermore, in the simulations with
no-slip boundary conditions larger voids are formed near the walls of the
bed in the top zone, which is clearly visible at t = 0.4 s. The particles at
the sides of the bed are pushed upward and to the center when the bubble
collapses in these simulations, resulting in an almost v-shaped pattern of the
top of the bed during these moments. Unfortunately, the images of Bokkers
(2005) do not show the top section of the bed, thus no definite conclusion
can be drawn about the best boundary conditions (free-slip or no-slip) so
far.

When we refer to boundary conditions used for these simulations it should
be borne in mind that these only concern the left and right walls, and not
the entire bed (i.e., not the front and back walls). However, the depth of the
pseudo-2D bed is too small to contain a sufficient number of cells in the y-
dimension to vary the conditions of the front and back wall with the present
DPM-code. Since the left and right walls are relatively small compared
to the front and back wall, one could argue that the search for the most
appropriate boundary conditions for the left and right wall is perhaps a bit
futile as long as only a single cell is used in the z-dimension. It is expected
that the simulations will improve even more when smaller grid cells (of the
order of the particle diameter) are used and the gas phase is solved in three
dimensions. However, this will put stronger demands on simulation time and
computer capacity, and it could also be argued that for many applications
any grid size or boundary condition that produces correct statistics in the
long term is sufficient.

Results: drag model

In the simulations that use the Ergun and Wen and Yu equations the size of
the bubble is overpredicted, as was already shown by Bokkers (2005). The
bubble sizes in the simulations with the Hill, Koch and Ladd-relation and
equation 4.4 the bubble sizes are more or less equal and compare well to the
experiments (see figure 6.15). In figure 4.6 it could be seen that the Ergun
equation severely overestimates the drag at high Reynolds numbers, with the
effect that the particles are blown away from the jet much too fast, so that
the bubble grows bigger than in the experiment. The simulations with the
new relation (equation (4.4)) and the Hill, Koch and Ladd-relation are not
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very different, which is not surprising as the Hill, Koch and Ladd-relation
forms a reasonable fit to our data as well (see figure 4.8).

At the end of the simulations there is a large difference in the bubble size
predicted from the various drag models, and also in the moment when the
bubbles collapse completely. At t = 0.5 s (figure 6.18), the bubbles in the
Ergun-simulations are still large, while in the simulations using the Hill,
Koch and Ladd-drag the bubbles have almost collapsed completely for the
no slip conditions, with the exception of a few particles near the walls. The
new model is somewhere in the middle of these extremes. Unfortunately the
top zone is not visible in the experimental picture so care should be taken
in drawing conclusions from this, but at present it seems that the new drag
closure from chapter 4 gives the best results.

6.3.2 Segregation simulations

When the particles in a fluidised bed differ in size and/or density, segrega-
tion may occur. This phenomenon is caused by a difference in drag force
and/or gravity, with the result that one type of particles fluidises more easily
than the other type. The particles that are easily fluidised (small or light
particles) will move to the top section of the bed (flotsam), while the other
particles settle in the bottom region (jetsam). In gas fluidised beds segrega-
tion usually occurs only at fluidisation velocities not far from the minimum
fluidisation velocity of the larger or heavier particles. At higher gas veloc-
ities bubbles cause a more thorough mixing in the bed, thereby disturbing
segregation patterns. Liquid fluidisation is usually more homogeneous than
gas fluidisation, which is the reason why segregation can occur at higher
velocities as well in this type of processes.

In practical applications segregation can be important, as particles are al-
most never monodisperse. In polymerisation or granulation processes high
diameter ratios may occur, which strongly influences the hydrodynamic be-
haviour and mixing in the reactor. On the other hand, it is essential to
control the size distribution of the end product and to prevent clogging of
the reactor. Therefore, a model that is able to predict segregation accurately
will be a very useful tool in industrial applications.

Hoomans (1999), Goldschmidt (2001a) and Bokkers et al. (2004) have shown
that it is very difficult to predict segregation processes in fluidised suspen-
sions accurately with the current CFD-models, especially when the rate of
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this segregation is used as a criterion and not merely the final state. This
suggests that the drag models require some modification for use in binary
or polydisperse systems.

In chapter 5 it was shown that the drag force on a particle in a binary or
polydisperse mixture can be substantially different from the drag force on
the same particle in a monodisperse system with equal porosity and at equal
Reynolds number. A relation was presented to correct for the effect of poly-
dispersity, which depends on the porosity, diameter ratio and composition
of the mixture. It is to be expected that this correction will influence the
behaviour in DPM-simulations of polydisperse mixtures noticeably.

The segregation simulations presented here are based on the experiments
performed by Goldschmidt et al. (2003), where glass particles with diameters
of 1.5 and 2.5 mm were fluidised with air in a pseudo-2D column. The
mixture consists of 25 % small particles and 75 % large particles, and the
fluidisation velocity is 1.30 m/s. Details of the experiments and simulation
are given in table 6.3.

The degree of segregation in the experiment was determined with an optical
method (Goldschmidt et al., 2003): pictures that were taken during the
experiment were divided in cells, and the intensities of red (large particles)
and yellow (small particles) were determined for each cell. From the fraction
of large and small particles in the cell the degree of segregation could then
be determined. This degree of segregation is defined as:

s =
S − 1

Smax − 1 , (6.1)

where S = 〈hsmall〉 / 〈hlarge〉 and Smax = (xlarge + 1) /xlarge, 〈hi〉 being the
average height of particles of type i and xlarge the volume fraction of large
particles. Thus, for a completely mixed system s = 0, and for a completely
segregated system s = 1. In the simulations the same quantitative measure
for segregation is determined via the z-coordinates of all particles.

The experiments were repeated three times, which differed slightly in the
degree of segregation. Values for the degree of segregation that are shown
in the figures in this section are the average of these three experiments. The
simulation was performed with several drag models and boundary condi-
tions. An overview of the various combinations is shown in table 6.4. Note
that we also performed simulations with the Ergun and Hill, Koch and Ladd-
drag models with the new correction for polydispersity, since this correction
factor can in principle be coupled with any monodisperse drag relation.
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Table 6.3: Settings in the segregation simulations.

Width 0.15 m

Depth 0.015 m

Height 0.45 m

Gas velocity 1.3 m/s

Coarse grid: Fine grid:

Cells in x-direction 15 30

Cells in y-direction 1 1

Cells in z-direction 45 90

Particles Large: Small:

Number 17940 27720

Diameter 2.5 mm 1.5 mm

Density 2525 kg/m3 2525 kg/m3

Coeff. of normal restitution 0.97 0.97

Coeff. of friction 0.10 0.10

Coeff. of tangential restitution 0.33 0.33
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Figure 6.19: Snapshots from segregation experiment and simulations show-
ing typical bubble patterns. All snapshots are taken shortly after start-up
(t = 2− 6 s). Numbers refer to table 6.4.
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Figure 6.20: Snapshots from segregation experiment and simulations at t =
10 s. Numbers refer to table 6.4.
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Figure 6.21: Snapshots from segregation experiment and simulations at t =
30 s. Numbers refer to table 6.4.
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Figure 6.22: Snapshots from segregation experiment and simulations at t =
50 s. Numbers refer to table 6.4.
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Table 6.4: Drag models and boundary conditions in the segregation simula-
tions.
Run Drag model Correction Grid Boundary

1 Equation (4.4) yes coarse free-slip

2 Equation (4.4) yes coarse no-slip

3 Equation (4.4) yes fine no-slip

4 Equation (4.4) no coarse free-slip

5 Equation (4.4) no coarse no-slip

6 Equation (4.4) no fine no-slip

7 Ergun/Wen & Yu no coarse free-slip

8 Ergun/Wen & Yu yes coarse free-slip

9 Hill et al. no coarse free-slip

10 Hill et al. yes coarse free-slip

Figures 6.19 to 6.22 show snapshots of the experiment and simulations.
Figure 6.19 shows typical bubble patterns that occur in each simulation,
the others illustrate the evolution of the segregation in time. A qualitative
comparison shows that the bubble patterns in the experiment and the sim-
ulations are very different, where the bubbles in the simulations are much
smaller. In the no-slip simulations all bubbles move towards the side walls
of the bed, whereas in the experiment and free-slip simulations they also
pass through the centre. The size of the bubbles has a strong influence on
the particle dynamics, most notably in the top layer. The top layer in the
simulation stays more or less at its place, whereas in the experiments it is
moving vigorously with every new eruption of a bubble. A more quantitative
comparison reveals that the bubble frequency (measured from bed expan-
sion characteristics) is higher in the simulations, ranging from 2.5− 3.1 Hz,
where this was 1.9 Hz in the experiments (Goldschmidt et al., 2003). In
simulation number 4 an even higher frequency of 3.7 Hz was observed for
some period of time, which was mainly due to some vigorous motions in the
segregated top layer.

In the simulations with no-slip boundary conditions and a coarse grid, many

117



Chapter 6

Figure 6.23: Degree of segregation as a function of time in experiments and
simulations with various boundary conditions. The drag force is calculated
from equation (4.4) in all simulations, the legend gives the other settings.

small particles are located in the vicinity of the side walls of the bed. A
movie of the simulation reveals a flow pattern of (small) particles moving
up through the center of the bed in the wake of bubbles, followed by a
downwards motion from the segregated layer along the sides of the bed, a
phenomenon which does not appear as such in the experiments. This is
related to the bubble pattern that was discussed previously: in the experi-
ment large bubbles disturb circulation patterns that are formed, so that the
particles have no chance to move downwards near the walls. A closer look
into this phenomenon will be taken in the next section.

Results: grid and boundary conditions

The degree of segregation as a function of time in simulations with various
boundary conditions is shown in figure 6.23, and compared to the experi-
mental value (average of three experiments). The segregation rate is much
higher in simulations with free-slip conditions than in simulations with no-
slip conditions. The reason is that in the no-slip simulations the fluid velocity
near the walls is smaller, so that the drag in the cells near the wall is also
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Figure 6.24: Degree of segregation in the lateral direction as a function
of time in experiments and simulations using various types of boundary
conditions. he drag force is calculated from equation (4.4) in all simulations,
the legend gives the other settings.

lower than in the rest of the bed. As a result, the drag force acting on par-
ticles close to these walls will not balance gravity anymore, so particles that
have reached the top layer move down again along the sides with a lower
segregation rate as a result.

Figure 6.24 shows the degree of segregation in the lateral direction (x-
dimension) slat, which is defined in the same way as the degree of axial
segregation s, where instead of the average height of the particles of type i
the average x-position relative to the center of the bed is taken. The dif-
ference between the simulations is obvious: in the simulations with no-slip
boundary conditions the lateral segregation is much larger than in the ex-
periments and the free-slip simulations. This effect is even more pronounced
in simulations using the Ergun and Hill drag models and no-slip boundaries
that are not shown here. The simulations with no-slip conditions performed
on a finer grid produce better results than the coarse grid simulations, which
can be explained by the fact that the zone near the wall with a reduced gas
velocity is smaller. The simulations with the new model with correction for
polydispersity show less lateral segregation than simulations without this
correction, the reason of which is not completely evident. The change in
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the drag force may also bring about subtle changes in the size and path of
the bubbles, that are not large enough to observe in the snapshots. These
changes could disturb the circulation patterns of the bed. A more thor-
ough investigation into porosity and particle velocities in the bed is clearly
required to confirm this.

The same remark about the front and back walls as in the single bubble
simulations applies: the boundary conditions at these walls were not varied
because of the small y-dimension and are assumed to be free-slip. Therefore,
one could wonder in this case as well if it is very useful to model the smaller
left and right walls as accurately as possible.

Concluding, no-slip boundary conditions in segregation simulations on a
coarse grid do not agree well with the realistic situation as observed in
the experiments. It is probably best to model these systems with free-slip
boundary conditions, as the bed in this case feels no influence from the walls
and no unrealistic circulation patterns are formed.

Results: drag model and polydispersity factor

When the correction factor for polydispersity, equation (2.56) or (5.1), is
taken into account, the drag on the small particles in the system becomes
smaller while the larger particles experience a larger drag than in a simula-
tion without this correction factor. Thus, the smaller particles move to the
top zone at a slower rate, while the larger particles have a lower downward
velocity, which means that the segregation rate becomes slower. Figure 6.25
clearly illustrates this effect for the free-slip simulations: for all drag models
the segregation becomes much slower with this correction (open symbols)
than without it (closed symbols). In figure 6.23 it can be seen that this is
also valid with other boundary conditions.

When we look at figure 6.25 we see that in the simulations without the
correction factor the systems are almost completely segregated after one
minute of simulation time, whereas the segregation in the experiment is 64 %
after the same period of time. The degree of segregation in the simulation
with the new drag relation with polydispersity correction has a value of
65 % at this time, and the rate at which the segregation occurs in the
same simulation also compares very well with the trend observed in the
experiment. The rate is better predicted with the new model than with the
combination of Ergun and Wen and Yu equations with correction, while the
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Figure 6.25: Degree of segregation as a function of time in experiments and
simulations with various drag models. All simulations were performed on a
course grid with free-slip boundaries. The drag force is shown in the legend.

performance of the model of Hill et al. (2001b) is comparable to the new
drag model obtained from this study.

It can be concluded that in segregation simulations, the correction factor
for polydispersity gives a significant improvement over drag models with-
out this correction. The effect of the drag model itself is less pronounced,
where the Ergun/Wen and Yu correlation gives the worst agreement with
the experiments.

6.4 Inversion

Layer inversion is a phenomenon that may occur when a system contains two
(or more) particle species differing in both size and density, where the smaller
particles have a larger density. At low liquid velocities gravity dominates the
drag force, and the small but heavy particles will reside in the bottom section
of the column. By raising the liquid velocity the drag force will increase,
which results in a better mixing of the two phases. At the inversion velocity,
the two phases are completely mixed. When the velocity is increased even
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Increasing liquid velocity

Figure 6.26: Schematic representation of layer inversion in liquid fluidised
beds, where the small particles have a higher density than the larger parti-
cles. The velocity is increased from left to right while the mixture composi-
tion is kept constant.
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further the drag forces dominate over gravity and the smaller particles will
occupy the top section of the column. Thus, effectively the order of the
layers is inversed, as is illustrated in figure 6.26. The velocity at which
the particles are mixed completely depends on the physical properties of
both species and the composition of the mixture. Layer inversion occurs in
mixtures containing three or more particle species as well, although in this
case there is usually not a single inversion point (see e.g. Berres et al., 2005).

The phenomenon has only been observed in liquid fluidisation, as this is
usually more homogeneous than gas fluidisation. Although in theory inver-
sion might occur in gas-fluidised beds, in practice the vigorous mixing due
to bubbling action disturbs the segregation in layers, especially at high gas
velocities.

The inversion phenomenon has been a topic of research interest for some
years now. Moritomi et al. (1982, 1986) studied the inversion for a mixture
of hollow char and glass particles as a function of mixture composition and
diameter ratio. Their data have been used by other researchers to test the
validity of their drag relations (see e.g. Patwardhan and Tien, 1985; Galvin
et al., 1999; Biesheuvel, 2000). The systems that are used for the comparison
of different drag models are composed of glass particles with a diameter of
dg = 0.163 mm and char particles of dc = 0.775 mm, with densities of 2450
and 2450 kg/m3 respectively. The amount of glass particles in the column
was fixed at 100 g, while the amount of coal was varied from 10 to 70 g
in order to change the equilibrium composition of the mixture and thus its
inversion velocity.

6.4.1 Calculation of the inversion velocity

The inversion point of a particle mixture is found by calculating the porosity
and liquid velocity at which an ideally mixed system of that composition
is exactly in equilibrium, meaning that the forces originating from the fluid
flow balance gravity for both particle species.

Figure 6.27 shows the inversion velocity of mixtures calculated from the new
drag model, equation (4.1), in combination with the correction for bidisper-
sity, equation (5.1). The experimental results of Moritomi et al. (1986) are
also shown, as well as the results from calculations using several literature
models. It can be seen that the values calculated from the model of Masliyah
(1979) are wide from the mark, where the other models, of Patwardhan and
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Figure 6.27: Inversion velocity as a function of mixture composition calcu-
lated from various drag models, compared to the experiments of Moritomi
et al. (1982).

Tien (1985) and Galvin et al. (1999), predict more realistic values for the
inversion velocity. However, they do not show the correct trend when the
mixture composition is changed. The combination of equations (4.1) and
(5.1) shows the correct trend, although the inversion velocity in mixtures
with a low amount of coal is overpredicted by about 16 %.

6.5 Conclusions

The pressure drop experiments confirm the validity of equation (4.1) to
calculate the drag force in both mono- and bidisperse random packed beds
at low Reynolds numbers. For intermediate Reynolds numbers however, a
systematic deviation from theoretical predictions from equation (4.4) was
found. This could be due to the fact that the drag force in this regime is
difficult to capture by a relatively simple functional form such as equation
(4.4), where the latice-Boltzmann data is not accurate enough to allow for
a more refined fit. Another cause could be the uncertainty in the values
for porosity and viscosity, in particular since the same deviation was not
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observed in the low Reynolds number experiments with glycerine.

The drag model from chapters 4 and 5 was implemented in the discrete par-
ticle model, with which the formation of a single bubble by a jet, as well as
the segregation of a binary mixture were studied. The results from simu-
lations using various drag models, grid sizes and boundary conditions were
compared to experimental data. The single bubble simulations showed that
a fine grid is required to obtain realistic structures in the particle behaviour.
However, they were not fully conclusive as to what drag relation gives the
most realistic bubble behaviour. In the segregation simulations, the seg-
regation rates were predicted very well by the new drag model (equation
(4.4)) in combination with the correction for bidispersity (equation (5.1)).
Free-slip boundary conditions produced more realistic results than no-slip
boundaries. It can be concluded that with the new drag relation and the
correction for polydispersity a significant improvement can be made in the
CFD models.

Finally, the calculation of the inversion velocity of mixtures of varying com-
positions showed that also in this case better results are obtained with the
new model, in combination with the correction factor for polydispersity,
than with several literature models.
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Drag force in clusters of
spheres

Abstract

Drag coefficients of irregularly shaped particles, constructed from spheres,
were measured in lattice-Boltzmann simulations and compared to exper-
imental data from literature. The agreement is very well. The distance
between the spheres was increased to study the influence of inter-particle
distance on the drag force in clusters. The drag coefficient of the clusters
was found to increase with inter-particle distance. The drag force on an
individual particle in a cluster is, as expected, lower when that particle is
shielded from the flow by other particles.
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Side viewTop view

Close to sphere (CTS)

Star

H-shape

Large close to sphere

Figure 7.1: The cluster shapes studied in the simulations. The distance
between the particles was varied.

7.1 Introduction

Most drag relations that are used in CFD modelling were derived for ideal
systems, that are monodisperse and homogeneous. However, in practical
applications these ideal circumstances almost never occur. Moreover in
processes such as spray granulation granules are formed, which consist of
a certain number of primary (spherical) particles, with a rather complex
shape. In chapter 5 we showed that the drag force on a particle in a bi-
or polydisperse mixture can differ substantially from the drag force on the
same particle in a monodisperse system with otherwise equal parameters.
This chapter focuses on the drag force in clusters, which can be seen as a
different type of non-ideality.

In a recent paper Tran-Cong et al. (2004) report on experiments in which
the drag coefficients of irregularly shaped particles are measured. They
constructed six configurations by gluing together up to fourteen spheres
and determined the terminal velocity of these shapes. The drag coefficient
calculated from this velocity was compared to the drag coefficient of spheres
having equal volumes or equal projected surface area. The irregular shapes
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that were studied by Tran-Cong et al. (2004) can be considered as clusters of
spheres where the particles are very close together. Their experiments form
a good starting point for simulations of the drag force on clusters, since
they provide data that can be compared directly to the simulation results.
Moreover, the configurations are made from spheres and can thus be easily
implemented in a lattice-Boltzmann code.

Simulations were performed for three of the configurations that were studied
by Tran-Cong et al. (2004), namely a nearly spherical configuration, a star
and an H-shaped particle (see figure 7.1). A close-to-spherical configuration
that was made up of more particles was also simulated in order to study the
influence of cluster size.

7.1.1 Drag force of irregularly shaped particles

As discussed in chapter 2, the drag force for a single spherical particle is
often presented in the form of a drag coefficient Cd, which was defined in
equation (2.9) as

Fd = Cd (Re)
πd2

4
ρU2

2
.

Note that the factor πd2/4 in this equation is equal to the projected surface
of the particle perpendicular to the direction of the flow. For the case of
irregularly shaped particles two drag coefficients are defined, since there are
several options to determine the diameter of such a particle. The ‘normal’
drag coefficient Cd is calculated from the drag force using the volume equi-
valent diameter dn (i.e. the diameter of a sphere with equal volume as the
irregular shape), and is defined as

Fd = Cd (Re)
πd2

n

4
ρU2

2
. (7.1)

Cd,A is the drag coefficient based on the projected surface of the particle:

Fd = Cd,A (Re)Ap
ρU2

2
= Cd,A (Re)

πd2
A

4
ρU2

2
, (7.2)

where dA is the diameter of a sphere with equal projected surface as the
irregular shape and Ap is the projected surface area of the particle normal
to the direction of flow. The two drag coefficients are obviously related by
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a factor (dA/dn)
2. Similar considerations apply to the Reynolds number of

these particles: Re is used for the Reynolds number based on dn, whereas
ReA is the Reynolds number based on dA.

Tran-Cong et al. (2004) measured the drag coefficients of irregularly shaped
particles and compared their results to the expression for the drag coefficient
of a spherical particle that was originally proposed by Clift et al. (1978),
which is valid for Reynolds numbers up to 3 · 105:

Cd =
24
Re

[
1 + 0.15Re0.687

]
+

0.42
1 + 4.25 · 104Re−1.16

. (7.3)

Tran-Cong et al. (2004) found it sufficient to characterize the shape of a
particle by two parameters: the ratio of the volume equivalent sphere di-
ameter to the projected surface equivalent sphere diameter dn/dA, and the
‘circularity’ c of the projected surface, which is defined as the ratio of the
perimeter of a sphere with equal projected surface area to the perimeter of
the projected surface of the actual particle. With these two parameters they
modified the equation of Clift et al. (1978) for the drag coefficient of a single
particle in the following way:

Cd =
24
Re

dA
dn

[
1 +

0.15√
c

(
dA
dn

Re

)0.687
]
+

0.42
(
dA
dn

)2

√
c

[
1 + 4.25 · 104

((
dA
dn

)
Re

)−1.16
] .

(7.4)

The modified correlation describes the experimental results very well. Values
for dn/dA and c for the shapes that were used in our lattice-Boltzmann
simulations are shown in table 7.1.

7.2 Simulations setup

For the simulations the same setup procedure was used as described in sec-
tion 3.4, where instead of random configurations of spheres a single cluster
was used as shown in figure 7.1. Periodic boundary conditions were used in
all dimensions, so that effectively a regular array of clusters is simulated.

The diameter of the particles from which the clusters were formed was usu-
ally 9.6 lattice spacings, and the width and depth of the simulation volume
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Table 7.1: Number of constituting spheres, ratio of the volume equivalent
sphere diameter to the projected surface equivalent sphere diameter dn/dA,
and circularity c of the projected surface for the irregular particles that were
used in the simulations.
Shape Number of spheres dn/dA c

Close-to-sphere (CTS) 13 1.15 0.901

Star 7 1.17 0.447

H-shape 7 1.38 0.378

Large CTS 32 1.12 0.712

were 200× 200 grid points. The height was varied with the Reynolds num-
ber, to minimize influence of periodical images. For low Reynolds numbers a
height of 200 grid points proved to be enough, for higher Reynolds numbers
lengths up to 1000 grid points were used.

According to the experimental results of Tran-Cong et al. (2004), the parti-
cles fall with the largest projected surface area perpendicular to the direction
of the flow. Therefore, the particles in the simulation were given this orienta-
tion with respect to their velocity, and similar to the simulation of random
arrays, a force was exerted on the fluid counteracting the force from the
particles. Particle velocity and fluid viscosity were varied to obtain a large
range of Reynolds numbers. The simulations were run until steady state was
reached, after which the force on each particle was measured. An example
of the drag force on an irregularly shaped particle is shown in figure 7.2. If
steady state was not reached after 150− 200 hours of calculation time on a
parallel cluster (which occurred in particular in high Reynolds number sim-
ulations) the results were extrapolated, assuming an exponential approach
as is shown in figure 7.3. This method was tested and proved to be accurate
within 0.2 %.

Apart from this simulations of clusters with a larger inter-particle distance
were performed. The distance between the particles was increased, while
the configuration was kept the same. All other aspects of these simulations
are equal to the cases described above.
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Figure 7.2: Drag force on an irregularly shaped particle.

Figure 7.3: Extrapolation of the force on an irregularly shaped particle to
infinite time.
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7.3 Results

Figures 7.4 and 7.5 show cross-sections of some typical flow profiles around a
close-to-spherical particle at different Reynolds numbers. The velocities are
scaled to a situation where the particles are not moving. At low Reynolds
numbers the profile is symmetrical around the cluster, showing laminar flow.
Increasing the Reynolds numbers leads to longer wakes, as expected. At the
particle boundaries no-slip conditions apply.

The force on each particle was measured, from which the total drag force Fd

on the cluster was determined. The surface based drag coefficient was then
calculated using equation (7.2). The resulting drag coefficients are shown in
figure 7.6 as a function of the surface based Reynolds number of the cluster.
The simulation results agree very well with the predictions from equation
(7.4) and thus with the experimental results of Tran-Cong et al. (2004). The
influence of the shape factors is very well predicted by our simulations. At
low Reynolds numbers all values for the drag coefficients are slightly higher
than expected, which is probably due to the periodic boundary conditions.
Hasimoto’s equation (Hasimoto, 1959) predicts that the drag coefficient of
a (spherical) particle in an array at these porosities is about 15 % higher
than the drag coefficient of a single particle. Probably the same holds for the
irregularly shaped particles that are used here. However, at higher Reynolds
numbers the results are slightly lower than the experimental values, which
is probably due to the dimensions of the simulation volume: the particle
is influenced by the wake of its periodical image. Tests confirm that the
deviation becomes worse if the length of the box is decreased. However,
increasing the simulation volume is prohibitively expensive. Therefore, the
focus in the following will be on low Reynolds numbers.

Increasing the inter-particle distance is found to have a strong effect on
the drag force, especially in configurations where one or more particles are
shielded by other particles. Figure 7.7 shows a cross-section of the flow in
a cluster where the distance between the centres of nearest neighbours is
equal to 2.5 times the particle diameter. Compared to figure 7.4 it should
be noted that although part of the fluid still flows around the cluster as a
whole, the flow profiles in the pores are much stronger developed in this
case. This strongly effects the drag force on the particles.

Figure 7.8 shows the average drag coefficients of the particles in the cluster as
a function of inter-particle distance. The coefficients are normalised by the
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Figure 7.4: Flow profile around an irregularly shaped particle in low
Reynolds number regime (Resp = 0.058 for a single constituting particle
or ReA = 0.13 for cluster)
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Figure 7.5: Flow profile around an irregularly shaped particle for higher
Reynolds number (Resp = 5.8 for a single constituting particle or ReA = 13
for cluster)
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Figure 7.6: Drag coefficients of irregularly shaped particles as a function of
the Reynolds number of the cluster (based on projected surface area)

drag of a single particle at the same Reynolds number (according to equation
7.3). The data in this figure were taken from simulations at low Reynolds
numbers, but for higher Reynolds numbers (up to order 10) the effect is very
similar. At small inter-particle distances the influence of the ratio dA/dn is
still clearly visible: when a larger fraction of the particles is exposed to the
flow, as is the case in the flat H-shaped cluster, the drag force is higher.
The ‘large CTS’-configuration has the smallest surface to volume ratio, and
thus the lowest drag force per particle. At large inter-particle distances this
effect disappears, since at that point the fluid moves freely in the pores and
the flow profiles around each particle become equal and independent of the
positions of other particles. Note that the drag coefficient of the particles at
large inter-particle distances reaches a value higher than the drag coefficient
of a single particle, since the particles form part of an array instead of being
completely solitary particles. In fact, the drag coefficients are in reasonable
agreement with Hasimoto’s equation, which predicts a value between 1.15
and 1.25, depending on the choice of inter-particle distance (the particle
arrays are not regular).

The drag force on individual particles was shown to depend heavily on the
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Figure 7.7: Flow profile around a cluster based on the close-to-sphere con-
figuration at low Reynolds number, (Resp = 0.058 for a single constituting
particle).
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Figure 7.8: Average drag coefficients of particles in clusters of various shapes
as a function of inter-particle distance at low Reynolds number, (Resp =
0.058)

Figure 7.9: Normalised drag coefficients of individual particles in clusters
based in the close-to-spherical configuration as a function of inter-particle
distance at low Reynolds number, (Resp = 0.058)
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shielding by other particles as well. Figure 7.9 shows the normalised drag
coefficients on four different particles in the CTS-configuration as a function
of the particle distance at low Reynolds numbers. When the inter-particle
distance is small, the fluid in the pores has more or less the same velocity as
the particles themselves and the central particle experiences almost no drag
force. The particles on the side however experience the strongest velocity
gradients, and thus the highest drag force. When the distance is increased,
flow patterns in between the particles develop and the drag force on the
central particle increases stronger than the average drag force, while the
relative contribution of the more exposed particles to the overall drag force
decreases. This proves that shielding is an important factor in determining
the drag force on individual particles.

Besides the inter-particle distance, the Reynolds number has a strong effect
on the drag coefficients of individual particles as well. Figure 7.9 shows
that the results for the particles in top and bottom layers are very similar
at low Reynolds numbers, as could also be expected from the symmetrical
flow patterns (see also figure 7.4). This changes at higher Re when the wake
becomes stronger. In that case the force on a particle in the top layer is
much lower than the force on a bottom particle if the inter-particle distance
is small. At larger distances (r/d > 5) the effect of the wake of the cluster
as a whole disappears.

7.4 Discussion and conclusions

The simulation results showed that the drag force on an irregularly shaped
particle, composed from spheres, is well described by the relation of Tran-
Cong et al. (2004). These irregularly shaped particles may also be viewed as
clusters with zero inter-particle distances. When the distance between these
particles was increased, flow developed in the pores between the particles
and the overall drag force on the cluster increased. The drag force on single
constituting particles showed a strong dependence on the shielding by other
particles.

In the models that are currently used to simulate fluidised-bed reactors,
the drag force between gas and particles is usually based on the porosity in
a fluid cell, assuming homogeneous distributions within these cells. As an
example we look at the configurations in figure 7.10. It should be noted that
the porosities for these configurations are equal. Thus, the current models
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Figure 7.10: Two cells with equal porosities. Left: no clustering. Right: a
cluster of particles. The overall drag force in the cell on the right will be
much smaller because of the clustering

would assume equal drag forces in both cases. However, our simulations
show that the drag force on each particle varies strongly with the inter-
particle distance. Omitting the effect of clustering may result in incorrect
drag forces and thus non-realistic behaviour in the simulation.

Future research will focus on a method to take clustering into account in
the discrete particle models, and possibly the multi-fluid models. A question
which is of particular interest is at what inter-particle distance the cluster
should not be treated as a single ’large’ particle, but rather as a suspension.
This transition occurs when the flow starts finding its way through the
channels within the cluster, instead of moving primarily around it.
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Simulation results

Table A.1: Results from the lattice-Boltzmann simulations
for the normalised drag force F in monodisperse arrays of
spheres at porosity ε for low Reynolds numbers; ∆F is an
estimate for the error in F .

ε F ∆F

0.40 38.85 0.33
0.45 27.40 0.24
0.50 20.10 0.22
0.55 15.45 0.13
0.60 11.97 0.12
0.65 8.90 0.14
0.70 7.22 0.06
0.80 4.25 0.07
0.90 2.44 0.04
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Table A.2: Results from the lattice-Boltzmann simulations
for the normalised drag force F in monodisperse arrays of
spheres at porosity ε for intermediate and high Reynolds
numbers. α is defined in equation (4.2).

ε Re F α ∆α

0.40 21.0 48.47 0.4579 0.0165
0.40 30.6 54.62 0.5153 0.0146
0.40 104.9 96.87 0.5526 0.0170
0.40 153.1 121.37 0.5393 0.0111
0.40 209.9 147.33 0.5166 0.0141
0.40 306.3 189.70 0.4930 0.0084
0.40 419.8 234.54 0.4659 0.0073
0.40 612.5 306.62 0.4372 0.0057
0.40 1049.4 455.85 0.3974 0.0056

0.45 21.0 34.43 0.3349 0.0221
0.45 1049.4 333.62 0.2918 0.0064

0.50 21.0 25.51 0.2576 0.0139
0.50 104.9 48.70 0.2726 0.0054
0.50 209.9 74.81 0.2606 0.0032
0.50 419.9 123.82 0.2470 0.0045
0.50 612.5 164.29 0.2354 0.0031
0.50 1049.4 255.40 0.2242 0.0027

0.55 1049.4 210.81 0.1862 0.0027

0.60 21.0 16.13 0.1979 0.0097
0.60 104.9 31.92 0.1902 0.0040
0.60 209.9 49.54 0.1790 0.0033
0.60 420.0 83.11 0.1694 0.0031
0.60 612.5 108.73 0.1580 0.0027
0.60 1049.4 164.74 0.1456 0.0031

0.70 21.0 10.19 0.1413 0.0075
0.70 104.9 20.70 0.1285 0.0031
0.70 209.9 32.72 0.1215 0.0023
0.70 1049.4 110.05 0.0980 0.0021

Continued on next page
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Table A.2: continued

ε Re F α ∆α

0.80 21.0 6.24 0.0946 0.0044
0.80 104.9 13.02 0.0836 0.0016
0.80 209.9 20.75 0.0786 0.0014
0.80 1049.4 77.31 0.0696 0.0010

0.90 21.0 3.95 0.0718 0.0024
0.90 104.9 8.37 0.0565 0.0011
0.90 209.9 13.30 0.0518 0.0007
0.90 1049.4 51.10 0.0464 0.0005
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Table A.3: Results from the lattice-Boltzmann simulations
for the normalised drag force on individual particles and the
average normalised drag force in bidisperse arrays of spheres
at low Reynolds numbers for various porosities, diameter ra-
tios and mixture compositions.

ε d1
d2

φ2

φ F1 F2 〈F 〉

0.35 0.500 0.500 31.42 105.78 51.44

0.40 0.500 0.500 23.06 76.85 37.57
0.40 0.607 0.817 20.10 46.81 38.55
0.40 0.700 0.493 27.94 50.83 36.42

0.50 0.250 0.494 10.69 112.43 22.39
0.50 0.250 0.748 6.65 59.29 23.04
0.50 0.333 0.247 15.70 106.66 21.14
0.50 0.333 0.495 11.45 74.59 22.01
0.50 0.333 0.750 7.39 43.14 21.77
0.50 0.500 0.100 18.67 61.78 20.32
0.50 0.500 0.250 17.37 56.38 21.62
0.50 0.500 0.500 12.75 39.89 20.20
0.50 0.500 0.749 10.28 31.06 21.47
0.50 0.500 0.901 8.47 24.53 21.06
0.50 0.500 0.950 7.23 21.24 19.62
0.50 0.607 0.250 17.01 39.36 20.14
0.50 0.607 0.502 14.27 32.48 20.34
0.50 0.607 0.753 11.65 25.35 20.00
0.50 0.607 0.817 10.94 24.60 20.41
0.50 0.700 0.253 18.20 33.24 20.75
0.50 0.700 0.493 15.44 27.46 19.91
0.50 0.700 0.745 12.94 24.41 20.24

0.60 0.250 0.494 7.23 62.31 14.07
0.60 0.250 0.748 4.68 33.74 14.28
0.60 0.333 0.247 9.29 55.96 12.23
0.60 0.333 0.495 6.98 37.71 12.47
0.60 0.333 0.750 5.14 25.23 13.55
0.60 0.500 0.250 9.86 29.34 12.05

Continued on next page
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Table A.3: continued

ε d1
d2

φ2

φ F1 F2 〈F 〉
0.60 0.500 0.502 8.15 23.33 12.45
0.60 0.500 0.752 6.47 16.56 12.12
0.60 0.607 0.250 9.84 21.54 11.51
0.60 0.607 0.507 8.80 18.30 12.10
0.60 0.607 0.817 6.80 13.33 11.41
0.60 0.700 0.253 10.20 17.41 11.45
0.60 0.700 0.493 9.05 15.08 11.34
0.60 0.700 0.745 8.38 13.62 11.79

0.65 0.500 0.502 6.31 17.03 9.41
0.65 0.700 0.493 7.54 12.24 9.34

0.75 0.500 0.250 4.81 12.06 5.69
0.75 0.500 0.502 3.98 9.28 5.61
0.75 0.500 0.752 3.33 7.09 5.55
0.75 0.607 0.250 4.88 9.18 5.54
0.75 0.607 0.507 4.43 8.37 5.84
0.75 0.607 0.753 3.60 6.52 5.44
0.75 0.607 0.817 3.64 6.40 5.62
0.75 0.700 0.253 5.03 7.81 5.54
0.75 0.700 0.493 4.63 7.31 5.66
0.75 0.700 0.745 4.19 6.14 5.49

0.90 0.500 0.502 2.11 3.64 2.68
0.90 0.700 0.493 2.16 2.90 2.47
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Table A.4: Results from the lattice-Boltzmann simulations
for the normalised drag force on individual particles and
the average normalised drag force in bidisperse arrays of
spheres at intermediate and high Reynolds numbers for var-
ious porosities, diameter ratios and mixture compositions.

ε d1
d2

φ2

φ Re F1 F2 〈F 〉 α

0.35 0.500 0.500 10 34.94 117.65 57.20 0.5764
0.35 0.500 0.500 100 80.28 275.00 132.47 0.8103
0.35 0.500 0.500 500 233.49 809.17 387.36 0.6718

0.40 0.500 0.500 10 25.56 85.50 41.72 0.4145
0.40 0.607 0.817 10 22.15 51.55 42.46 0.3908
0.40 0.700 0.493 10 31.30 57.17 40.88 0.4462
0.40 0.500 0.500 100 56.95 193.38 93.60 0.5602
0.40 0.607 0.817 100 46.82 106.69 88.26 0.4971
0.40 0.700 0.493 100 70.89 133.68 93.98 0.5756
0.40 0.500 0.500 500 159.81 543.15 262.75 0.4504
0.40 0.700 0.493 500 202.78 378.01 267.39 0.4619

0.50 0.250 0.494 10 12.08 127.09 25.31 0.2918
0.50 0.250 0.748 10 7.42 66.18 25.72 0.2674
0.50 0.333 0.247 10 17.82 121.71 24.02 0.2881
0.50 0.333 0.495 10 12.93 84.54 24.88 0.2873
0.50 0.333 0.750 10 8.32 48.39 24.45 0.2684
0.50 0.500 0.100 10 21.08 69.72 22.95 0.2622
0.50 0.500 0.250 10 19.63 63.22 24.39 0.2765
0.50 0.500 0.500 10 14.59 46.10 23.21 0.3016
0.50 0.500 0.749 10 11.56 35.20 24.28 0.2804
0.50 0.500 0.901 10 9.56 27.49 23.63 0.2563
0.50 0.500 0.950 10 8.11 23.92 22.08 0.2465
0.50 0.607 0.250 10 19.03 44.10 22.54 0.2400
0.50 0.607 0.502 10 16.16 36.67 23.01 0.2664
0.50 0.607 0.753 10 13.21 28.78 22.69 0.2695
0.50 0.607 0.817 10 12.14 27.18 22.57 0.2160
0.50 0.700 0.253 10 20.61 37.68 23.50 0.2748
0.50 0.700 0.493 10 17.46 30.94 22.48 0.2568

Continued on next page
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Table A.4: continued

ε d1
d2

φ2

φ Re F1 F2 〈F 〉 α

0.50 0.700 0.745 10 14.53 27.35 22.70 0.2452
0.50 0.250 0.494 100 27.11 284.90 56.77 0.3438
0.50 0.250 0.748 100 16.06 144.49 55.98 0.3294
0.50 0.333 0.247 100 40.37 276.31 54.43 0.3330
0.50 0.333 0.495 100 29.25 192.10 56.41 0.3439
0.50 0.333 0.750 100 18.58 108.91 54.88 0.3311
0.50 0.500 0.100 100 48.12 160.19 52.40 0.3208
0.50 0.500 0.250 100 44.19 142.29 54.91 0.3329
0.50 0.500 0.500 100 31.89 101.02 50.80 0.3060
0.50 0.500 0.749 100 26.03 81.41 55.68 0.3421
0.50 0.500 0.901 100 21.19 61.51 52.81 0.3174
0.50 0.500 0.950 100 18.36 54.42 50.23 0.3061
0.50 0.607 0.250 100 42.10 98.57 49.99 0.2985
0.50 0.607 0.502 100 36.40 81.55 51.53 0.3119
0.50 0.607 0.753 100 29.97 66.28 52.05 0.3205
0.50 0.700 0.253 100 47.19 85.59 53.70 0.3295
0.50 0.700 0.493 100 39.23 70.15 50.73 0.3081
0.50 0.700 0.745 100 32.50 61.36 50.88 0.3063
0.50 0.250 0.494 500 71.78 755.37 150.38 0.2560
0.50 0.333 0.495 500 74.80 500.26 145.36 0.2467
0.50 0.500 0.100 500 134.81 449.30 146.83 0.2530
0.50 0.500 0.250 500 111.03 365.48 138.60 0.2340
0.50 0.500 0.500 500 88.57 271.60 139.09 0.2378
0.50 0.500 0.749 500 69.08 215.93 147.72 0.2525
0.50 0.500 0.901 500 55.90 165.89 142.01 0.2419
0.50 0.500 0.950 500 49.38 148.39 136.84 0.2344
0.50 0.607 0.502 500 94.76 212.67 134.25 0.2278
0.50 0.700 0.493 500 105.49 186.82 135.80 0.2318

0.60 0.250 0.494 10 8.32 71.94 16.22 0.2148
0.60 0.250 0.748 10 5.30 38.25 16.19 0.1904
0.60 0.333 0.247 10 10.75 64.71 14.14 0.1911
0.60 0.333 0.495 10 7.96 43.15 14.24 0.1766
0.60 0.333 0.750 10 5.83 28.65 15.38 0.1837
0.60 0.500 0.250 10 11.40 33.91 13.94 0.1885

Continued on next page
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Table A.4: continued

ε d1
d2

φ2

φ Re F1 F2 〈F 〉 α

0.60 0.500 0.502 10 9.38 27.02 14.38 0.1922
0.60 0.500 0.752 10 7.43 18.86 13.84 0.1722
0.60 0.607 0.250 10 11.39 24.82 13.32 0.1805
0.60 0.607 0.507 10 10.08 20.88 13.84 0.1741
0.60 0.607 0.817 10 7.62 15.18 12.94 0.1534
0.60 0.700 0.253 10 11.77 19.96 13.19 0.1746
0.60 0.700 0.493 10 10.38 17.24 12.98 0.1645
0.60 0.700 0.745 10 9.43 15.54 13.39 0.1604
0.60 0.250 0.494 100 19.53 168.61 38.05 0.2398
0.60 0.250 0.748 100 12.03 87.54 36.92 0.2264
0.60 0.333 0.247 100 25.68 154.12 33.78 0.2155
0.60 0.333 0.495 100 18.50 101.26 33.20 0.2073
0.60 0.333 0.750 100 13.05 64.92 34.69 0.2114
0.60 0.500 0.250 100 27.39 81.94 33.52 0.2147
0.60 0.500 0.502 100 22.40 65.39 34.52 0.2207
0.60 0.500 0.752 100 16.97 43.06 31.60 0.1949
0.60 0.607 0.250 100 27.12 59.06 31.70 0.2018
0.60 0.607 0.507 100 23.52 49.58 32.54 0.2044
0.60 0.607 0.817 100 18.14 35.73 30.54 0.1913
0.60 0.700 0.253 100 27.70 46.78 31.02 0.1957
0.60 0.700 0.493 100 24.27 40.72 30.49 0.1915
0.60 0.700 0.745 100 21.65 35.95 30.92 0.1913
0.60 0.333 0.495 500 48.63 267.63 87.45 0.1500
0.60 0.500 0.502 500 58.83 175.60 91.53 0.1582
0.60 0.700 0.493 500 65.34 111.18 82.60 0.1425

0.65 0.500 0.502 10 7.41 19.71 10.99 0.1572
0.65 0.700 0.493 10 8.82 14.18 10.88 0.1537
0.65 0.500 0.502 100 18.13 47.77 26.79 0.1737
0.65 0.700 0.493 100 20.79 33.92 25.80 0.1646

0.75 0.500 0.250 10 5.73 14.44 6.79 0.1099
0.75 0.500 0.502 10 4.70 11.05 6.65 0.1041
0.75 0.500 0.752 10 3.90 8.35 6.52 0.0968
0.75 0.607 0.250 10 5.84 10.89 6.62 0.1076

Continued on next page
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Table A.4: continued

ε d1
d2

φ2

φ Re F1 F2 〈F 〉 α

0.75 0.607 0.507 10 5.23 9.81 6.88 0.1039
0.75 0.607 0.753 10 4.29 7.78 6.50 0.1053
0.75 0.607 0.817 10 4.27 7.79 6.78 0.1158
0.75 0.700 0.253 10 5.98 9.21 6.57 0.1034
0.75 0.700 0.493 10 5.30 8.36 6.48 0.0819
0.75 0.700 0.745 10 4.90 7.23 6.45 0.0960
0.75 0.500 0.250 100 14.47 37.23 17.22 0.1152
0.75 0.500 0.502 100 11.58 27.68 16.47 0.1087
0.75 0.500 0.752 100 9.37 20.11 15.68 0.1013
0.75 0.607 0.250 100 14.60 27.49 16.58 0.1104
0.75 0.607 0.507 100 12.75 24.19 16.85 0.1101
0.75 0.700 0.253 100 14.66 22.89 16.15 0.1061
0.75 0.700 0.493 100 13.25 20.43 16.04 0.1038
0.75 0.700 0.745 100 11.51 17.44 15.43 0.0994
0.75 0.500 0.502 500 31.03 77.68 44.93 0.0786
0.75 0.700 0.493 500 38.41 61.93 47.42 0.0835

0.90 0.500 0.502 10 2.73 4.71 3.47 0.0789
0.90 0.700 0.493 10 2.75 3.72 3.16 0.0691
0.90 0.500 0.502 100 7.08 13.01 9.19 0.0651
0.90 0.700 0.493 100 7.29 9.90 8.38 0.0591
0.90 0.500 0.502 500 19.15 38.27 25.56 0.0458
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Table A.5: Results from the lattice-Boltzmann simulations
for the normalised drag force on individual particles and
the average normalised drag force in a polydisperse array of
spheres, consisting of four particle types with diameter ratios
1:2:3:4.

ε 〈Re〉 F1 F2 F3 F4 〈F 〉 〈F 〉theory
0.502 0.2 7.82 22.23 44.54 75.24 21.22 20.26
0.502 10 8.78 24.95 49.87 84.46 23.81 22.50
0.502 100 19.48 55.37 111.02 188.48 52.92 48.84
0.502 500 54.07 155.73 313.98 530.39 148.37 147.44
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Error analysis experiments

As an example the calculation of the error in a monodisperse experiment is
presented. The calculation of the uncertainty in bidisperse experiments is
very similar and results in errors of the same order.

All pressure drops are measured with an error of 1 % or less. From the
pressure drop, the normalised drag force is calculated using equation (2.2):

F =
ε

(1− ε)
d2

18µU
∆P

L
.

The relative error in F is thus given by:

∆F

F
=
∆ε

ε
+
∆(1− ε)
(1− ε)

+ 2.0 · ∆d

d
+
∆µ

µ
+
∆U

U
+
∆(∆P )
(∆P )

+
∆L

L
.

The standard deviation in the particle diameter is 2 % or less for all particle
species. The distance between the measuring points L, column length Lc

and diameter Dc are measured with an accuracy of 0.2 mm.

The porosity is determined from the weight of the particles in the column:

ε = 1− φ = 1− mp

ρpVc
.

The relative error in the packing fraction φ is:

∆φ

phi
=
∆mp

mp
+
∆ρp
ρp
+2·∆Dc

Dc
+
∆Lc

Lc
= 0.0002+0.002+2∗0.0025+0.0007 ≈ 0.008 .
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The viscosity is determined from the time it takes to fall through a capillary,
and the error in this measurement is less than 1%. However, the viscosity is
strongly influenced by the temperature, which fluctuates slightly during the
experiments and may also depend on position in the reactor. A variation in
the temperature of only 0.2 K results in a change in the porosity of almost
2 %, which is why a relative error in the viscosity of 0.03 will be used here.
The velocity is determined based on the pump frequency after calibration
of this flow, and the error made is estimated to be 1 %.

The relative error in the value for the normalised drag force determined from
the experiments is thus:

∆F

F
= 0.015 + 0.008 + 0.001 + 2.0 · 0.02 + 0.03 + 0.01 + 0.001 ≈ 0.11 .

Furthermore, there is also an error in the theoretically predicted value due
to the error in the porosity and Reynolds number with which it is calculated.
For the low Reynolds regime this error is:

∆Fth

Fth
= 2 · ∆ε

ε
+
∆(1− ε)
(1− ε)

= 2 · 0.015 + 0.008 ≈ 0.04 ,

for high Reynolds numbers the relative error is of the same order. The error
in bidisperse systems is comparable to the error in monodisperse systems.

The relative error in the measured normalised drag force is thus 11 %, while
the error in the theoretical prediction is 4 %, a total error of 15 %.
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Notation

Cd − drag coefficient

d − particle diameter

F − normalised dragforce (normalised by Stokes-
Einstein drag)

Fb N buoyancy force

Fd N drag force

Ff→s N total force that fluid exerts on particle

k − Kozeny constant

mp kg particle mass

N − number of particles

P Pa pressure

rh m hydraulic radius: ratio of pore volume to surface
area of medium

Re − Reynolds number

t s time

U m/s superficial velocity

u m/s local fluid velocity

vp m/s particle velocity

V m3 system volume

Vp m3 particle volume
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yi − ratio of diameter of type i particle to average di-
ameter, di/ 〈d〉

β kg/m3s interphase momentum transfer coefficient

ε − porosity

κ m2 permeability

µ kg/ms viscosity

ρ kg/m3 fluid density

τ kg/ms2 viscous stress tensor

φ − solids packing fraction

χi − fraction of phase i with respect to total solids frac-
tion

〈..〉 [..] average property

Variables in lattice-Boltzmann model (all in lattice units):

c ∆x/∆t velocity of grid direction

cs ∆x/∆t speed of sound

d ∆x effective particle diameter

d0 ∆x initial particle diameter

n n discretised velocity distribution

neq n equilibrium velocity distribution

t ∆t time

r ∆x position

u ∆x/∆t velocity

j n∆x/∆t momentum

Π n (∆x/∆t)2 stress

ρ n/ (∆x)3 density
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Dankwoord

Na bijna vijf jaar onderzoek (en al ruim elf jaar in Twente), is nu dan
eindelijk mijn proefschrift gereed. Een tijd om even terug te kijken op die
periode, en vooral om even stil te staan bij de mensen die me in al die tijd
gesteund hebben.

Toen mij ruim vijf jaar geleden, tijdens mijn afstuderen gevraagd werd of
ik interesse had in een promotie-opdracht, moest ik daar nog wel even over
nadenken. Ik was er niet helemaal van overtuigd dat het wel iets voor mij
was om me vier jaar lang met één project bezig te houden, en wist ook niet
of ik wel nog vier jaar in Enschede wilde blijven wonen. Uiteindelijk heb ik
toch voor die promotie gekozen. Hoewel het af en toe met vallen en opstaan
is gegaan en ik het begrip ‘promotiedip’ ook zeker heb ondervonden, heb ik
een goede tijd gehad en veel geleerd.

Aan mijn promotor Hans Kuipers ben ik zeer veel dank verschuldigd, omdat
hij mij de kans heeft geboden deze promotie tot een goed einde te brengen
en voor alle begeleiding en aanwijzingen die ik gedurende de afgelopen vijf
jaar heb mogen ontvangen. Ook mijn dagelijks begeleider Martin van der
Hoef wil ik hier bedanken voor de vele discussies en voor de simulaties die
hij gedaan heeft, en omdat hij er altijd in is blijven geloven, zelfs wanneer
ik zelf in een dip zat.

FOM heeft het onderzoek gefinancierd, en NCF zorgde voor rekentijd bij
Sara in Amsterdam. Zonder die steun had dit proefschrift er niet gelegen.

Many thanks to Anthony Ladd for allowing us to use his lattice-Boltzmann
code, without which I could not have done the job. His suggestions were
also highly appreciated.

Aan het eind van mijn promotie heb ik Wil Paping mogen begeleiden bij
zijn afstudeeropdracht, die ik wil bedanken voor alle gedane experimenten en
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het enthousiasme waarmee hij altijd op zoek ging naar nieuwe mogelijkheden
voor de opstelling. Ook Wil’s familie wil ik hierbij betrekken vanwege het
vele rijgwerk dat ze gedaan hebben voor de tweede opstelling; het is jammer
dat deze experimenten helaas niet meer in dit boekje gepubliceerd konden
worden.

Robert Brouwer heeft de opstellingen gebouwd, bedankt daarvoor. Wat be-
gon als een simpel schetsje op een kladblaadje bleek in de praktijk toch vaak
lastiger dan gedacht; vooral het lekdicht maken van de tweede opstelling en
het snel genoeg rond kunnen pompen van de glycerine hadden nog heel wat
voeten in de aarde. Ook de andere technici wil ik bedanken voor het mee-
denken en de goede suggesties, en Robert Meijer ook voor de ondersteuning
op computer gebied.

Martin van Sint Annaland heeft geholpen met de visualisatie-software voor
de deeltjesconfiguraties en de snelheden. Maarten Biesheuvel heeft mij op
enkele artikelen over sedimentatie van bi- en polydisperse systemen gewezen,
en een belangrijke bijdrage geleverd aan de inversie-berekeningen.

Nicole, Ria en tijdens de vakantie ook Irene, bedankt voor de administratieve
ondersteuning en de gezelligheid. Ook vele andere diensten binnen de facul-
teit hebben het mogelijk gemaakt dat ik me op mijn werk kon richten zonder
me druk te hoeven maken over alles wat daarmee (zijdelings) verband houdt.

De afgelopen vijf jaar zouden natuurlijk niet hetzelfde zijn geweest zonder
alle collega’s en afstudeerders. Bedankt allemaal voor de hulp bij comput-
erproblemen, het onderhoud van het cluster, codes voor validatie en tips
met betrekking tot die codes en alles wat ik hier vergeet. Maar bovenal be-
dankt voor de vele discussies in de pauze, lezingen, vakgroepuitjes, zeilweek-
enden en niet te vergeten de borrels; dit alles maakte het Vlugterlab tot een
geweldige werkomgeving. Ook Liesbeth Kuipers wil ik hier bedanken voor
het enthousiasme waarmee ze het jaarlijkse Waarbeekfeest, de skivakanties
en vele andere gezellige uitjes regelde.

Naast het werken was er natuurlijk meer. Vrijwel elke dinsdagavond bracht
ik bij MSO door, eerst alleen met de harp (en vaak zelfs alleen de ‘derde
helft’) maar de laatste tweeeneenhalf jaar ook op viool. Bedankt voor alle
onvergetelijke momenten, zoals de reizen, de repetitieweekenden en vaak
bijzondere concerten (van ‘Romeo en Julia’ tot ‘Jesus is alive’ en ‘Lord of
the Rings’).

De groep van ‘The Cat’ zorgde voor gezelligheid bij het jaarlijkse Catweek-
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Dankwoord

end en alle verjaardagen. Door alle concerten en de laatste tijd door de
drukte was ik misschien niet altijd aanwezig, maar de keren dat ik er wel
was waren (wat mij betreft) zeker de moeite waard. Ook jullie steun tijdens
de laatste maanden heb ik zeer op prijs gesteld! Ook alle andere vrienden
en vriendinnen wil ik bedanken voor de leuke jaren. Mensen bij naam noe-
men houdt altijd het risico in dat je iemand vergeet en daarom doe ik het
maar niet, maar alle mailtjes, avondjes uit of juist op de bank zitten bijklet-
sen, wandelingen, middagjes shoppen enzovoort waren altijd een welkome
afwisseling.

En last maar zeker niet least ben ik mijn ouders en broer(tje) zeer dankbaar
voor alle steun die zij mij altijd gegeven hebben. In moeilijke perioden kon
ik altijd op hen terug vallen, en ze waren altijd bereid mee te denken over
wat er nog moest gebeuren, of te helpen met kralen rijgen of andere zaken
buiten het werk om.

Nogmaals bedankt allemaal!

Renske
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Levensloop

Renske Beetstra werd op 6 april 1976 geboren in Voorburg. Na de lagere
school in Apeldoorn behaalde zij in 1994 haar VWO-diploma aan het Gym-
nasium Apeldoorn. In juli van datzelfde jaar nam ze deel aan de Inter-
nationale Chemie Olympiade in Oslo (Noorwegen), alwaar zij een gouden
medaille behaalde.

In september 1994 werd begonnen met de studie Chemische Technologie aan
de Universiteit Twente in Enschede. Tijdens deze studie liep ze stage bij
Auburn University in Auburn, Alabama (VS) waarbij een verpakkingspro-
ces en de regeling daarvan gemodelleerd werden. De studie werd in mei 2000
afgesloten met een afstudeeropdracht in de groep ‘Fundamentele Aspecten
van de Procestechnologie’ op het gebied van de modellering van wervelbed-
den, waarbij aannames uit de kinetische theorie voor granulaire stroming
geverifiëerd werden met behulp van een discrete deeltjes model.

In november 2000 begon Renske met een promotieonderzoek naar de wrijv-
ingskracht tussen vaste deeltjes en flüıda met behulp van rooster-Boltzmann
modellen in de groep ‘Fundamentele Aspecten van de Procestechnologie’. De
resultaten van dat onderzoek staan in dit proefschrift beschreven.
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